PERMEABLE / POROUS PAVEMENTS

LOW IMPACT DEVELOPMENT TRENDS IN THE SOUTHWEST

2013 LID Basics and Beyond

Todays Outline

LID and stormwater water refresher

- Past pavement types
- Water volumes and "C"
- Pervious / porous types of alternatives
- COG / ASU / NAU project histories (5-6 yrs. + in local environment

Low Impact Design (LID)

- "LID is an approach to land development/ redevelopment that works with nature to manage stormwater as close to it's source as possible"
 - Recreating natural features to treat stormwater before it leaves the site
 - Minimizing imperviousness to create functional site attributes that treat stormwater as a RESOURCE rather than a WASTE product.

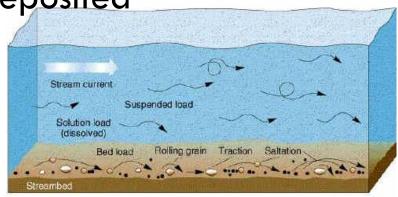
Distinction of stormwater vs. treated water entering "waters of the US"

Stormwater generated by (MS4) are regulated by ADEQ - EPA – stormwater enters waters of the US <u>untreated</u> by street flow etc. and must be managed

Historical impermeable surface treatments

- Rigid pavements— Concrete / PCCP
- Flexible pavement asphalt

HMA, dense graded, open graded


- Native soil surface treatments chemical additives, emulsions- COG Thunderbird Parking Lots
- All lead to high potentially unfiltered and contaminated runoff volumes

Environmental impacts from impervious surfaces

- Produce higher peak sheet flows (Q's)
- Produce landscaping , channel incision, erosion, increased sediment transport heavy metals from automobiles etc.
- Reduces infiltration due to rapid movement
- Increases stormwater pollutant loads to aquifer never deposited

How much water from 1 acre+?

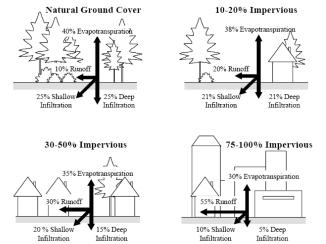
100 year rain event (design value) yields approximately 9918 cubic feet of water from only one acre of land = 74,200 gallons of water !!

Park and Ride in Glendale Arizona currently covers about 120,000 square feet of parking area = 2.75 acres = 204,000 gallons untreated water entering waters of the US

<u>**C**</u> = <u>Storage capacity</u></u> - LESS LAND for retention, vegetation, trees and MORE LAND for project space !!! Agencies are grappling with storage credit etc.

Pollutant removal – one benefit

	Typical Pollutant Removal (percent)				
BMP Type	Suspended Solids	Nitrogen	Phosphorus	Pathogens	Metals
Dry Detention Basins	30 - 65	15 - 45	15 - 45	< 30	15 - 45
Retention Basins	50 - 80	30 - 65	30 - 65	< 30	50 - 80
Constructed Wetlands	50 - 80	< 30	15 - 45	< 30	50 - 80
Infiltration Basins	50 - 80	50 - 80	50 - 80	65 - 100	50 - 80
Infiltration Trenches/ Dry Wells	50 - 80	50 - 80	15 - 45	65 - 100	50 - 80
Porous Pavement	65 - 100	65 - 100	30 - 65	65 - 100	65 - 100
Grassed Swales	30 - 65	15 - 45	15 - 45	< 30	15 - 45
Vegetated Filter Strips	50 - 80	50 - 80	50 - 80	< 30	30 - 65
Surface Sand Filters	50 - 80	< 30	50 - 80	< 30	50 - 80
Other Media Filters	65 - 100	15 - 45	< 30	< 30	50 - 80


Additional benefit of pervious / permeable pavements – Mitigating heat island effect

HEAT ISLAND MITIGATION Comparing surface temperatures between and Asphalt Road and Concrete Parking Lot in Rio Verde, Arizona. Max air temperature that day was 100F.

Well which is it - permeable or porous ?? (or pervious) ??

- Permeable surfaces allows or directs the water to pass around the aggregate or paver – such as a paving block, paving stone, gravel / grass pave
- Porous / Pervious surfaces pavements allow or direct the water to pass "through" the medium such as pervious concrete or porous asphalt.
- □ Both reduce "c"

2013 LID Basics and Beyond – February 5th, 2013

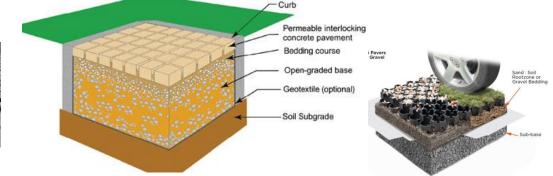
Source: Adapted from Arnold and Gibbons, 1996

Some types of pavement surfaces

- Wooden roadways / decks 1900's ground or elevated ???
- Open graded aggregates surfaces (base course)
- Open-celled paving grids (geocells)
- Open jointed paving blocks /pavers / grid pavers
- Pervious / porous concrete
- Pervious / porous asphalt (arid SW not compatible)

Open graded aggregate surfaces i.e. ABC – chips etc...

Inexpensive / effective - can be highly permeable depending on gradation susceptible to degradation


Open jointed paving blocks, block pavers, grid pavers

- Cost competitive with pervious concrete
- Repairs individual units can be replaced
- Initial infiltration rates reduced due to void space
- High freeze-thaw, salt resistance
 - In the arid southwest?

- Medium to high urban heat island reduction
- LEEDS benefit recycled component using flyash, slag, etc and can reused or re-crush upon removal
- Mechanically installed, no lag time for curing etc.

Properties of Pervious Concrete

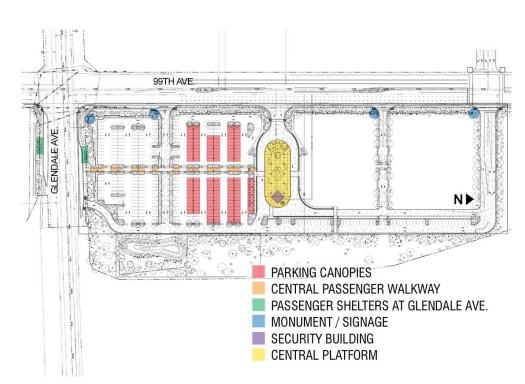
- □ Slumps 0 3/4" DRY
- Unit weights 125-135pcf approx 70% of traditional
- Mix temperature (90F max) of concern as W/C ratio's low – cannot cool effectively
- Placement times and dates should be able to accommodate temperature constraints

- Permeability appx.
 288in/hr.-770in/hr.
 - **=** 24ft./hr. 65ft./hr.
- Compressive strength appx.500-4000psi – 2500 psi. avg.
 - Susceptible to wheel loads

Pervious concrete examples in Arizona since 2006

- NAU-ARD Building Late 2006
- ASU Arts Building
 2007
- Glendale Park and Ride 2008
- Super-lite Block facility
- Phoenix Cement Terminal

NAU – ARD Building


Pavement failed and has been overlaid / replaced with HMA due to rip hazards and is being redesigned for more compatible design (Dr. Jun Ho Chun). FREEZE / THAW?

Pervious Concrete Limitations

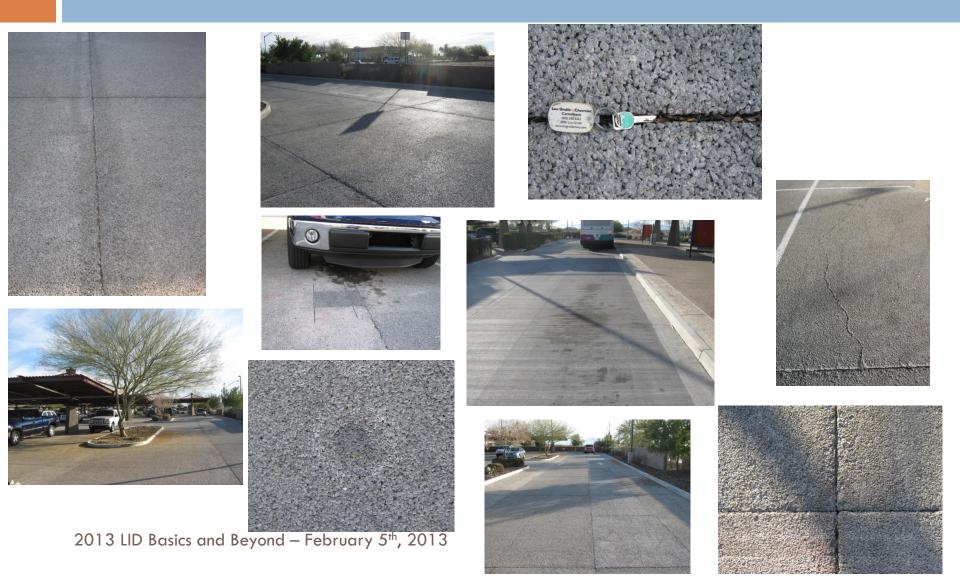
- □ Slopes should be limited to 5% to reduce runoff
- □ Can assume 40% voids in rock bed STORAGE
- Generally not for heavy loading consider mixing pavement types to match vehicle types
 - PCCP for drive aisles, pervious for low usage areas
- Aggregates used in rock bed should be clean/well to maximize capacity
- □ GOOD CONTRACTOR / DESIGNERS

City of Glendale Park and Ride Facility (99th Avenue and Glendale)

- Phase 1 Completed
 - January 2007
 - 388 spaces
- Phase 2
 - 254 spaces
- 642 at build out
- Costs
- □ HMA = \$693,570
- Pervious = \$844,07
 - 20 yr. HMA more than pervious

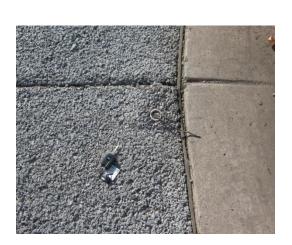
Placement – August 2007

1 to 3 Year warranty items



5 year performance COG Park and Ride

ASU construction 2006



6 year performance - ASU

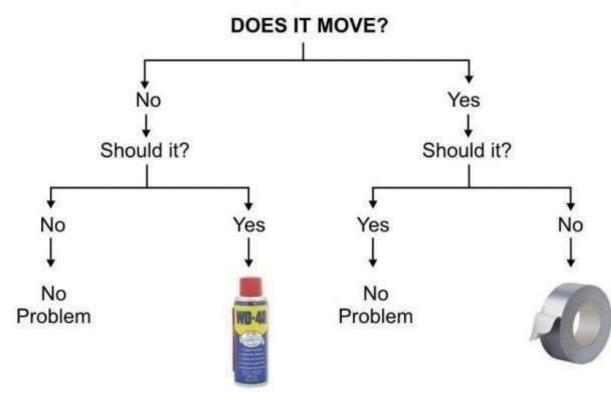
2013 LID Basics and Beyond – February $5^{\rm th}\text{, }2013$

??? Maintenance ???

- ASU pavement NO discernible maintenance to date.
 - Very satisfied with performance to date
- COG Park and Ride
 - 6 mos. hire contractor for vacuumed or brush work
 - Flush pavement pores appear to be self cleaning due to dust size
 - Extremely satisfied to date with performance
 - Additional request for study in 2012

Additional studies

□ Pore cleaning April 2012 – 3 locations **77.5** in./hr. to 131.5 in./hr. (+69.7%) □ 181.7 in./hr to 191.0 in./hr. (+5.1%) □ 118.7 in/hr. to 137.7 in./hr. (+16.1%)



2013 LID Practices in the Arid Southwest February 5th 2013

Closing / Questions? tkaczmarowski@glendaleaz.com

Engineering Flowchart

