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ABSTRACT  
   

Decision makers contend with uncertainty when working through complex 

decision problems. Yet uncertainty visualization, and tools for working with 

uncertainty in GIS, are not widely used or requested in decision support. This 

dissertation suggests a disjoint exists between practice and research that stems 

from differences in how visualization researchers conceptualize uncertainty and 

how decision makers frame uncertainty. To bridge this gap between practice and 

research, this dissertation explores uncertainty visualization as a means for 

reframing uncertainty in geographic information systems for use in policy 

decision support through three connected topics.  

Initially, this research explores visualizing the relationship between 

uncertainty and policy outcomes as a means for incorporating policymakers' 

decision frames when visualizing uncertainty. Outcome spaces are presented as a 

method to represent the effect of uncertainty on policy outcomes. This method of 

uncertainty visualization acts as an uncertainty map, representing all possible 

outcomes for specific policy decisions. This conceptual model incorporates two 

variables, but implicit uncertainty can be extended to multivariate representations.  

Subsequently, this work presented a new conceptualization of uncertainty, 

termed explicit and implicit, that integrates decision makers’ framing of 

uncertainty into uncertainty visualization. Explicit uncertainty is seen as being 

separate from the policy outcomes, being described or displayed separately from 

the underlying data. In contrast, implicit uncertainty links uncertainty to decision 

outcomes, and while understood, it is not displayed separately from the data. The 
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distinction between explicit and implicit is illustrated through several examples of 

uncertainty visualization founded in decision science theory.  

Lastly, the final topic assesses outcome spaces for communicating 

uncertainty though a human subject study. This study evaluates the effectiveness 

of the implicit uncertainty visualization method for communicating uncertainty 

for policy decision support. The results suggest that implicit uncertainty 

visualization successfully communicates uncertainty in results, even though 

uncertainty is not explicitly shown. Participants also found the implicit 

visualization effective for evaluating policy outcomes. Interestingly, participants 

also found the explicit uncertainty visualization to be effective for evaluating the 

policy outcomes, results that conflict with prior research. 
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CHAPTER 1 

INTRODUCTION 

1.1 Introduction 

Public policy decisions are often made in the face of future conditions that are 

inherently uncertain. Policies are statements by the government of what it intends 

to do (or not do) as a response to a problem that impacts the public (Birkland, 

2001). Policy makers routinely rely on scientific results to identify alternatives 

and evaluate their potential impacts (Pielke et al., 2010;Dilling and Lemos, 2011). 

Policy makers contend with and manage uncertainty, while identifying the best 

alternatives for a given problem. Science has sought to provide tools and 

information to support policy decision making in the face of uncertainty for issues 

impacting society, including public health (Rychetnik et al., 2002), climate 

change (Gober et al., 2010;Gober et al., 2011;van Vuuren et al., 2011), water 

management and planning (Xu and Tung, 2008;Lee et al., 2010), transportation 

and land use planning (Geerlings and Stead, 2003;Litman, 2003;Arampatzis et al., 

2004), housing policies (Horner and Murray, 2003;Natividade-Jesus et al., 2007) 

geology (Viard 2011), ecology (Ascough et al., 2008), and environmental 

management (Sigel, Klauer and Pahl-Wosti 2010;Verstegenetal et al. 2012). As 

an example, Rehr et al. (2012) developed and applied a decision support 

framework for coral reef protection and management in Florida. This framework 

focused on supporting complex and uncertain decision making by integrating 

science with the decision problem through two steps. The first translates scientific 

results into meaningful information for use in decision-making, by illustrating 
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potential outcomes (both intended or unintended) of different decision 

alternatives. The second clarifies the decision problem, objectives and goals of the 

decision makers in order to ensure relevant legal, social, and institutional 

constraints are considered. Their approach highlights uncertainties in the decision 

process enabling better-informed decisions. Nevertheless, the usability of 

uncertain scientific information remains limited in terms of providing decision 

support for complex, highly uncertain problems (Dilling and Lemos 2011;Dong 

and Hayes 2012). 

 Providing usable science for decision support considers whether decision 

makers perceive the information as useful, as well as whether they can integrate 

the information into their decision process (Pidgeon et al. 2003;Pielke, Sarewitz, 

and Dilling 2010;Dilling and Lemos 2011). As a means to make science more 

usable for decision support, researchers have focused on reframing information to 

make it relevant to policymakers (Couclelis 2003;Nisbet and Mooney 2007; 

Nisbet 2009). Reframing scientific results in this way shifts the focus from 

communicating technical complexities of research to providing information that 

supports policymaker’s ability to manage the impacts of uncertainty on policy 

options. This dissertation explores uncertainty visualization as a means for 

reframing uncertainty in geographic information systems (GIS) for use in policy 

decision support through three major topics. The first topic explores visualizing 

the relationship between uncertainty and policy outcomes as a means for 

considering the decision frames of policymakers when presenting uncertainty 

through visualization in GIS (Chapter 2). The second topic takes reframing 
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further, discussing a new conceptualization of uncertainty, termed explicit and 

implicit, that integrates decision makers’ framing of uncertainty and outcomes 

into uncertainty visualization (Chapter 3). The final topic evaluates the 

effectiveness of an implicit uncertainty visualization for communicating 

uncertainty for policy decision support (Chapter 4).  

 The remainder of this chapter discusses these topics in more detail 

including a literature review of relevant work in decision science, visual 

communication of science and uncertainty visualization. Further discussion of the 

three topics discussed above and research topics follow the literature review. The 

chapter concludes with a breakdown of the dissertation format.  

 

1.2 Literature Review 

This literature review supports the development of a new approach to uncertainty 

visualization for decision support meant to bridge the gap between researchers’ 

and decision makers’ conceptualization of uncertainty. This review is divided into 

two themes. The first is a review of decision science as it relates to decisions 

under uncertainty and decision frames. This theme provides the foundation for 

considering the user in uncertainty visualization methods. The second theme 

focuses on GIS and visualization research as it relates to uncertainty visualization, 

including existing approaches to developing uncertainty visualization and 

evaluations of existing methods. These themes relate to each of the three chapters 

that make up this dissertation. Each chapter has its own literature review that 

highlights the relevant work for that chapter. The inclusion of this review here is 
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to synthesize the ways in which these themes are connected and support the 

dissertation research. 

 

1.2.1 Decision Making Under Uncertainty 

Decisions represent often ill-structured problems in which the decision maker 

assesses two or more alternatives and then commits to one (Jonassen, 2012). 

Decision-making is the process by which an individual’s beliefs and desires are 

merged to choose between alternatives (courses of action) (Hastie 2001). When 

making decisions, individuals must evaluate the consequences of choices 

(alternatives or actions) through the assessment of alternatives in light of what the 

decision maker wants and expects (Hastie 2001). Some problems require only 

making a single decision, such as what computer to purchase, while other 

complex and inherently uncertain problems require iterative decision making 

where the selection of an alternative lays the foundation for evaluating the next 

decision. For example, a city’s decision to restrict water usage would lead to 

additional decisions about how and when to implement restrictions. 

Normative models of decision making, such as expected utility, define 

how decisions under uncertainty ought to be made. Decisions are broken down 

into four basic components: (1) alternatives, (2) possible future conditions of the 

world, (3) probabilities of the future conditions of the world, and (4) information 

about outcomes of the alternatives under differing future conditions (Jonassen, 

2012). These models assume decision makers are rational, well able to work 

through complicated decisions, and fully informed, and that the uncertainties and 
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probabilities for given alternatives are agreed upon, knowable and known. The 

goal is not to explain or predict behavior, but to facilitate better decisions through 

structured analysis of decision alternatives and the probabilities associated with 

those alternatives (Schmoldt, 2001) to select the most optimal outcome.  

Decision support tools meant to support evaluation of decisions under 

uncertainty are often normative in nature, focusing on identifying, quantifying, 

and explicitly representing probability and uncertainty (Manson et al., 

2002;Sevcikova et al., 2007;Ascough et al., 2008). Sevcikova et al. (2007) 

developed probability methods for assessing uncertainty in UrbanSim, an urban 

simulation decision support model, with the goal of identifying and quantifying 

sources of uncertainty in land use and transportation policy. UrbanSim consists of 

nine individual models that integrate household location and mobility, economic 

location and mobility, employment location and mobility, land pricing, real estate 

development and transportation (accessibility). Researchers stated that significant 

sources of uncertainty in the system must be identified in order to carry out a 

probabilistic assessment, with the goal of quantifying as much of the uncertainty 

as possible.  

While the normative approach is beneficial for decisions where 

uncertainty can be identified and quantified, and specific probability distributions 

of alternative are known, this poses a significant disadvantage for decisions under 

deep uncertainty where the information needed to identify the optimal solution 

cannot be agreed on or often does not exist (Polasky et al., 2011). Deep 

uncertainty exists in decisions where there is disagreement on the state of future 
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conditions and the probability distributions of alternatives and outcomes cannot 

be known or agreed upon (Lempert et al., 2003;Gober et al., 2010). This leads to 

challenges in developing probability based decision support tools for complex, 

deeply uncertainty problems. Van der pas et al. (2010) developed an exploratory 

multi-criteria decision analysis methodology to address deep uncertainty in 

intelligent speed adaption (ISA) devices that are meant to adjust driving speeds 

and reduce traffic accidents. Many aspects of the implementation of ISA devices 

are deeply uncertain, including how to model the traffic implications of using the 

devices, and whether or not the public would accept using the devices or believe 

their benefits. Under these deep uncertainties, developing a best estimate model is 

not a viable approach. In response, Van der pas et al. (2010) adapted a sensitivity 

analysis approach to evaluate the viability of ISA implementation.  

Developing decision support tools for experienced decision-makers poses 

additional challenges, as normative, probabilistic approaches are not necessarily 

compatible with how experienced decisions makers solve problems (Cohen and 

Freeman, 1996). Descriptive models of decision making explore how people 

make decisions. In practice, decision makers rarely select alternatives based on 

purely rational choices, but instead base decisions on information about the 

decision alternatives combined with affective feelings and emotions about those 

alternatives (Slovic et al., 2004;Slovic et al., 2007). In domains where decision 

makers know a lot about decision problems, and have their own beliefs, biases 

and experiences with those problems, decisions problems become both context 
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and domain dependent (Cohen and Freeman, 1996;Rettinger and Hastie, 

2001;Jonassen, 2012).  

Any decision problem – defined by the alternatives and consequences 

involved with a particular decision, governed by the available data and the 

relative uncertainty of the data – is framed by the unconscious emotions, past 

experiences and expectations a decision maker associates with a particular course 

of action (Tversky and Kahneman 1981). Consequently, decision-making is 

context dependent, with people framing decisions in many ways (Jonassen, 2012). 

Different decision frames arise due to many factors, such as one person who has 

multiple or changing goals, or by many different decision makers, each having 

different perspectives, experiences, or conceptual understandings of the problem. 

Moreover, when faced with decisions under uncertainty, individuals often revert 

to heuristics, or abstract mental rules to determine a course of action. Individuals 

learn to apply heuristics that result in the most favorable outcomes, reducing the 

complexity of assessing the alternatives and potential outcomes in these 

frequently met problems (Patt and Zeckhauser 2000;Spiegelhalter, et al. 2011). 

Strategies for working through decisions often rely on the development of internal 

narratives (stories) about the problem, trying to minimize negative or maximize 

positive impacts (Jonassen, 2012). Decision support tools that integrate these 

psychological components of decision making into their methods may better 

support how people actually come to a decision.    
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Prescriptive decision models acknowledge that humans can be poor 

decision makers.  These models are concerned with the development of tools to 

support and enhance the decision-making process, focusing on the development 

of tools that fulfill two goals. Tools must be both useful to decision makers, and 

decision makers must actually be able to use them. In effect the goal of 

prescriptive models is to prescribe how decision makers can approximate 

normative decision processes in practice. The result is a synthesis of normative 

and descriptive models (Brown and Vari, 1992).  

Prescriptive theories have resulted in varied approaches to bridge 

decision-making theory and practice. Some approaches focus on a structured 

sequence of activities. For example, decision trees offer a means to graphically 

depict available decision alternatives, the uncertainty and probabilities associated 

with those alternatives, and evaluations/measures of how well each alternative 

meets the objectives for the decision problem (Kingsford and Salzberg, 2008). 

This approach assumes discrete alternatives with known or knowable 

probabilities. For decision making under deep uncertainty, these probabilities may 

not be know, and the identification of a discrete set of alternatives that perform 

well over variable future conditions may not be feasible. 

Scenario planning offers a means to better handle evaluation of variable 

future conditions. Scenario planning offers methods that build on how people 

make decisions, offering a wide range of decision support functions  (Bishop et 

al., 2007;Volkery and Ribeiro, 2009). Ideally, scenarios support thinking 

creatively about the future, allowing decision makers to be prepared for 
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conditions of deep uncertainty, by allowing them to evaluate policies over many 

plausible futures (Volkery and Ribeiro, 2009). Scenarios consist of the stories of 

these plausible futures, from the anticipated to the highly uncertain, that are meant 

to allow decision makers to make better sense of change, their perceptions of the 

problem, and related problem solving strategies. This approach allows better 

identification and management of conflicts between groups and competing social 

interests, helping to find common ground for decisions, a key element of policy 

making (Volkery and Ribeiro, 2009). Uncertainty can be accounted for in the 

range of plausible futures, as well as identification of strategies that perform at a 

required level even in worst-case scenarios.  

For example, Klosterman (1999) developed “What if?”, a scenario based 

policy-planning tool for projecting future land use demands and identifying 

locations suitable for those land uses. The system allows users to create alternate 

scenarios related to development and policy, and to see the impact of those 

choices on projected future land use plans, as well as the impact of the projected 

land use on employment and population trends. While the system was shown to 

be easy to use, as the number of future states, policy alternatives and input 

parameters increase, users would have to run through more and more scenarios 

(individually) to see the full range of impacts. The sheer number of scenarios that 

could result would be incredibly challenging to evaluate (Lempert et al., 2003).  

With many plausible scenarios for future conditions, developing static 

policies that perform well in many of these futures is unlikely (Walker et al., 

2001;Lempert, 2002;Lempert et al., 2003). Addressing problems with deep 



10 

uncertainty requires policies that are robust across a range of plausible futures, 

instead of being optimized for a single best estimate of future conditions. Policies 

that involve deep uncertainty occur when not enough is known about future 

conditions to predict changes, and there is insufficient information, or lack of 

agreement among stakeholders, about the system model and its probabilities 

(Lempert et al., 2003;van der Pas et al., 2010). Robust decision-making focuses on 

identifying policies that are less sensitive to these unknowns (deep uncertainties) 

by representing multiple plausible futures. Rather than identify optimal policies 

that perform the “best” for a given future condition, the goal in robust decision-

making is to identify polices that perform well over a number of possible futures. 

Decision makers can then evaluate these robust policies in detail (Lempert et al., 

2003).  

The evaluation of policy decisions over a range of possible future 

conditions serves as a dynamic and anticipatory approach to dealing with 

conditions of deep uncertainty. Instead of focusing on the most likely outcome, 

robust approaches stress the importance of planning for a range of future 

conditions. The result is a shift from producing and evaluating discrete solutions 

for a single future, to envisioning how decisions (policies) will perform over a 

range of possible future conditions (Couclelis, 2003;Lempert et al., 2003), 

resulting in a continuous range of outcomes. In robust decision-making, decision 

support tools that support the assessment of this range of outcomes over uncertain 

futures would be advantageous over those that provide discrete solutions and 

probability estimates of uncertainty. Visualization is well suited for 
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communicating this level of continuous data, as visualization can convey complex 

and dense information in a single view, that otherwise would not be easily 

communicated through individual images or the written word  (Tufte, 

1983;Cleveland, 1984a;Hedges, 1987).   

 

1.2.2 Uncertainty Visualization in Cartography and GIS 

Several efforts in cartography, visualization, and GIScience research have sought 

to incorporate uncertainty information in geographic visualization  (Aerts et al., 

2003a;Pham and Brown, 2003;Li and Zhang, 2006;Bostrom et al., 2007;Viard et 

al., 2011;Dong and Hayes, 2012). Researchers have sought the most appropriate 

and effective means of depicting uncertainty (Buttenfield, 1993;Goodchild et al., 

1994;Leitner and Buttenfield, 2000), carrying out experiments comparing 

visualization techniques  (Blenkinsop et al., 2000;Aerts et al., 2003a;Slocum et 

al., 2003;Keuper, 2004). For example, MacEachren et al. (1998) developed and 

tested a pair of intrinsic methods for depicting “reliability” of data on choropleth 

maps used in epidemiology.   

A common approach is to begin with the adaptation of Bertin’s (1983) 

visual variables for the representation of uncertainty. These visual variables 

include size, shape, value, orientation, color, and texture. Along with these 

variables, additional graphic variables, such as transparency, saturation, and 

clarity have also been proposed (MacEachren, 1992;Slocum et al., 2004) 

specifically for uncertainty visualization.  
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Additionally, Gershon (1998) proposed two general categories of 

visualization strategy: intrinsic and extrinsic. Both categories rely on visualizing 

either quantitative or qualitative estimates of uncertainty. Intrinsic techniques 

integrate uncertainty in the display by varying an existing object’s appearance to 

show associated uncertainty. Although the uncertainty and “object” are 

represented in unified representation, such as using fuzzy lines to represent vague 

boundaries, the uncertainty is still explicitly depicted as separate from the 

underlying data. Extrinsic techniques rely on the addition of geometric objects to 

highlight uncertain information. For example, model results might be qualitatively 

identified using a range of certain to uncertain using hatch marks of varying 

density (extrinsic), while surface heights offer a method for representing error 

quantitatively (intrinsic). These categories offer methods for representing 

uncertainty of specific features or objects as explicit uncertainty, but do not offer 

a means to integrate uncertainty, data, and decision outcomes (Figure 1.1).  

The primary focus of many studies is to develop generalizable methods of 

uncertainty visualization that would be applicable to a wide range of uses. Studies 

meant to evaluate specific uncertainty visualization methods often focus on 

designing the visualization (Buttenfield, 1993;Fauerbach et al., 1996;Djurcilov et 

al., 2002;Bostrom et al., 2007;), evaluating whether users were able to identify 

specific uncertainty values (Blenkinsop et al., 2000) and assessing the impact of 

uncertainty visualization on perceptions and data identification (Hope and Hunter, 

2007;Xiao et al., 2007). Newman and Lee (2004) evaluated both extrinsic and 

intrinsic techniques for the visualization of uncertainty in volumetric data 
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comparing glyph-based techniques, such as cylinders and cones, with color-

mapping and transparency adjustments. They found that while each method was 

useful for identifying uncertainty in the scenario test, the glyph techniques were 

most beneficial. Leitner and Buttenfield (2000) focused on the alteration of the 

decision-making process by changing the representation, through systematically 

altering Bertin’s visual variables, finding that inclusion of uncertainty clarified 

mapped information and reduced decision time.  

Some researchers have also focused on the effectiveness of uncertainty 

visualization specifically for decision support environments, while still focusing 

on visualizing discrete uncertainty values  (Cliburn et al., 2002;Aerts et al., 2003a; 

Slocum et al., 2003;Goovaerts, 2006). Aerts et al. (2003a) analyzed static 

representations and toggling as methods for visualizing uncertainty in a water 

balance model. Their study found that planners and decision makers found the 

inclusion of uncertainty information useful, preferring the static representations to 

toggling back and forth between the maps. 
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Figure 1.1 Intrinsic and Extrinsic Visualization Methods 
 

Cliburn et al. (2002) developed a visualization environment to allow decision 

makers to visualize the results of a water-balance model. Their study focused on 

the effectiveness of explicit intrinsic and extrinsic methods for communicating 

explicit uncertain values for use in decision support. That study found that the 

complexity and density of the representation methods seemed to overwhelm 

novice decision makers, while experts were able to use the detail more readily in 

decision-making. They suggest that intrinsic methods provide a more general 
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representation of uncertainty data, which non-expert users may prefer over more-

detailed visualizations. An additional approach to assessing the effectiveness of 

uncertainty visualization for decision support emphasizes identifying areas of 

commonality between alternatives instead of providing probability estimates or 

directly identifying uncertainty. Dong and Hayes (2012) tested an uncertainty 

visualization method that identified overlap in the range of possible values for two 

or more alternatives. This goal is to support identification of ambiguity in the 

alternatives. In tests of a decision support system, both with and without this 

uncertainty information, they found that participants did not distinguish between 

ambiguous and unambiguous alternatives when the uncertainty visualization was 

excluded. While the system still requires users to input information for each 

individual alternative or scenario, it is interesting to note, that uncertainty is 

represented as a range of values, and not as a single probability estimate.  

While uncertainty visualization research has sought to develop and 

evaluate methods effective for visualizing uncertainty, the focus on representing 

specific uncertainty values is not effective for decisions under deep uncertainty. In 

context dependent decision support settings, such as public policy, visualizing 

discrete uncertainty values does not support the assessment of multiple 

alternatives over multiple futures. Conceptualizing uncertainty as the relationship 

between decision outcomes and differing future conditions offers a new approach 

to uncertainty visualization, integrating the ways in which policy decision makers 

frame decisions under uncertainty (Cohen and Freeman, 1996;Jonassen, 2012), 
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and where visualizing the full range of outcomes for all plausible future 

conditions represents the uncertainty in future conditions.  

 

1.2.3 Summary 

Decision science seeks to understand the ways in which people choose between 

alternatives in the face of uncertainty. Many models of decision making identify 

both how people should make decisions and the probabilities associated with 

given alternatives. However, when developing tools for decision support, 

understanding how people actually make decisions under uncertainty is beneficial. 

Decision makers frame decisions based on their emotions, biases, past 

experiences and prior knowledge, and some decision support models attempt to 

capitalize on these decision frames in order to develop better decision support 

tools. In practice, decision makers often view uncertainty as unavoidable, and 

potentially, as integral to the definition of a problem (Pahl et al. 2007;Brugnach et 

al. 2008). However, many decision makers consider existing methods for 

visualizing uncertainty as either irrelevant or detrimental for successful data 

communication and insight generation (Cliburn et al. 2002;Slocum et al. 2003; 

Brugnach et al. 2007).  

 

1.3 Research 

In decision support settings, technical and complex scientific 

visualizations and statistical estimation, like those tools currently being developed 

in GIS uncertainty research, may not be usable or easily understood by decision 
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makers. One explanation for this is that specific uncertainty estimates might be 

less important than an understanding of the impact of uncertainty on decision 

outcomes over a range of possible future conditions (Lempert, Popper, and 

Bankes 2003;Pawson, Wong and Owen 2011). This suggests a possible 

discrepancy (Goodchild, 2006) between GIS uncertainty research and the 

practical methods of addressing uncertainty in decision-making. 

This dissertation suggests that this disconnect stems from a mismatch 

between the ways that GIS decision support research conceptualizes uncertainty 

and the ways in which decision makers’ frame uncertainty in decision settings. To 

bridge this gap in understanding, this dissertation presents a new 

conceptualization of uncertainty, termed explicit and implicit, which integrates the 

ways in which decision makers consider both uncertainty and outcomes when 

making decisions under uncertainty. This conceptualization is presented and 

evaluated through three main research topics presented in three publishable 

manuscripts: 

• Topic 1: Visualizing decision making under uncertainty as continuous 

outcome space 

• Topic 2: Conceptualizing explicit and implicit uncertainty 

• Topic 3: Evaluating the effectiveness of implicit uncertainty 

visualization for communicating uncertainty in decision support 

settings.   

 The remainder of this section presents these topics in detail.   
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1.3.1 Topic 1: Visualizing decision making under uncertainty as continuous 

outcome space  

The first topic in this dissertation (Chapter 2) presents continuous outcome space 

as an approach to uncertainty visualization that integrates user decision frames. 

This research builds upon visualization methods presented by Lempert, Popper, 

and Bankes (2003) for mapping Landscapes of Plausible Futures (LPF) (Gober 

and Kirkwood, 2010). The landscapes provide decision makers with 

visualizations intended to aid in exploration of patterns and properties of large, 

multidimensional data sets produced as output to robust decision making 

scenarios. In these landscapes, the axes represent uncertainty variables identified 

as vital to the problem under consideration. Each point of intersection between 

values on the axes represents the outcome of a given scenario. The area within the 

landscape that represents all possible outcomes (defined in this research as the 

outcome space) can further be delineated into regions of no/mild/overwhelming 

regret. An adaptation of the LPF is introduced as a method to visualize 

uncertainty (Figure 1.2) by showing the outcomes of policy decisions for all 

possible future conditions under study.  
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Figure 1.2 Conceptual outcome space visualizing implicit uncertainty 
 
  

 This approach conceptualizes uncertainty as the variability of decision 

outcomes over a range of uncertainty future conditions. The focus on alternatives 

aligns with policy maker decision frames of evaluating outcomes and offers 

advantages over identifying specific uncertainty values at specific locations. First, 

the LPF allows decision makers to identify the scenarios with the most favorable 

outcomes. After these scenarios are identified, more detailed exploration of 

outcomes could continue. Second, this approach views uncertainty as a function 

of relationship between the range of possible futures and decision outcomes. 

Lastly, this approach addresses a shortcoming of scenario planning, where there 
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may be multiple future scenarios that could be considered by decision makers. 

Often it is necessary to reduce the number of scenarios to make assessments by 

decision makers more manageable. This means multiple scenarios of future 

conditions may be eliminated prior to decision makers, the ones responsible for 

the decisions, becoming involved. Adapting LPF allows decision makers to 

identify policies robust over the largest range of future conditions. After these 

policies are identified, further analysis can be completed for each area under 

study. 

 The conceptual example of LPF in Chapter 2 focus on water management 

systems, which are traditionally operated under the assumption of stationarity—

the idea that natural systems fluctuate within an envelope of variability that does 

not change (Milly et al., 2008;Gober et al., 2010). Climate change, however, 

poses a challenge to the stationarity assumption; as changes to the Earth’s climate 

are altering the rate of river discharge, mean precipitation, sea levels, and other 

aspects of the water cycle and water supply. Water planners express awareness 

and acceptance of the uncertain nature of the impacts climate change may have on 

this assumption, as well as the uncertainty inherent in the models used to predict 

these changes (Howard, 2008). In the conceptual example presented in Chapter 2, 

the outcome space represents the net cumulative change in groundwater based on 

policy decisions made by decision makers. As policy decisions are implemented, 

the values in the outcome space can change based on the model results. This 

conceptualization of uncertainty as a continuous outcome space offers an 

opportunity for decision makers to explore how climactic uncertainty (evidenced 
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by changes to the stationarity assumption) affects outcomes of policy decisions, 

supporting the assessment of the relationship between uncertainty, alternatives, 

and outcomes.  

 

1.3.2 Topic 2: Conceptualizing explicit and implicit uncertainty  

The second topic of this dissertation (Chapter 3) builds on the uncertainty 

visualization approach presented in Chapter 2, developing a conceptualization of 

uncertainty, termed explicit and implicit, as a way to approach uncertainty 

visualization that is prescriptive in nature, bringing tools to support evaluation of 

uncertainty in decisions in a manner useful and usable by decision makers. 

Explicit uncertainty is linked more to normative models, theoretically defining 

what decision makers should know about data and model outcomes. Implicit 

uncertainty is linked to both descriptive and prescriptive models, integrating what 

decision makers actually do in practice into tools to support better decisions.  

 Explicit uncertainties are gaps, errors, and unknowns displayed or 

represented through quantitative values (e.g., error bars) or qualitative estimations 

(e.g., more or less uncertain). In explicit visualization, uncertainty is conceived of 

as specific values or measures, related to, but not the same as, the underlying data. 

GIS researchers use explicit uncertainty to evaluate uncertainty in data sources, 

models parameters, and results. Most current methods for visualizing uncertainty, 

as described above, are explicit. 

 



22 

Explicit approaches to uncertainty visualization for decision support share 

traits with the normative models of decision-making.  Like normative models that 

build on how decision makers should make decisions, visualization features such 

as transparency or texture (MacEachren, 1992), focus on representing known 

uncertainties, assuming that better decisions result from evaluation these values. 

There is an inherent assumption that decision makers can use statistical estimates 

to evaluate policy options. For many of these methods, the probabilities of future 

conditions must be known or knowable, and the goal of using these methods is to 

improve decisions by identifying optimal solutions. For decision support settings, 

specific statistical estimates of uncertainty for discrete alternatives do not reflect 

how decision makers approach decision-making under uncertainty in practice. 

 Implicit uncertainty represents how, in practice, decision makers consider 

a range of alternative decisions due to different data sources, model parameters, 

models, and policy choices. As such, the definition, interpretation and, potentially, 

representation of uncertainty is informed by the users and the domain. Implicit 

uncertainty is conceived of as being related to policy outcomes, so that the overall 

range of potential outcomes is as important as the geographic variability of the 

outcomes. Few geographic visualization methods represent implicit uncertainty. 

Implicit visualization builds on descriptive decision approaches, 

acknowledging the impact of decision makers experience, emotions and 

knowledge on how they frame decision problems, without assuming that the 

probability of future conditions are known or knowable.  The goal of implicit 

visualizations is to develop tools that are both useful to, and usable by, decision 
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makers in order to support more informed decisions through exploration of the 

relationship between uncertainty and decision outcome. The relationship between 

uncertainty and decision outcomes becomes key to identifying policies that are 

robust against uncertainty. This focus on providing tools that assist decision 

makers in integrating uncertainty visualization in decision-making is prescriptive 

in nature.  

The development of explicit and implicit uncertainty based on theories in 

decision science about how decision makers address uncertainty in practice 

addresses the first three components of usable science (Pielke et al., 2010;Dilling 

and Lemos, 2011). First, it relates the goals of this research to the specific “on the 

ground” problems of policy decision making under deep uncertainty. Second, the 

work engages with and strives to understand the needs of the policy decision 

makers through studies that engage decision makers and seek to understand how 

they integrate uncertainty into their decisions. And lastly, it brings the needs of 

the user into the science process with the consideration of decision frames.  

Focusing on uncertainty as inherent to decision outcomes, instead of separate 

or ancillary, is a departure from prior approaches to uncertainty visualization. 

Representing decision outcomes and uncertainty as integrated information reflects 

the manner in which decision makers frame decisions under uncertainty. This 

reframing supports exploration of the relationship between decisions and 

uncertainty relative to its role in the decision process, focusing on uncertainty and 

decisions as a whole, and not as individual and separate information. 
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1.3.3 Topic 3: Evaluating the effectiveness of implicit uncertainty visualization 

for communicating uncertainty in decision support settings 

The third topic of this dissertation (Chapter 4) focuses on evaluating the 

effectiveness of the implicit uncertainty visualization shown in Chapter 2 for 

communicating uncertainty in decision settings where the goal is to identify the 

most robust policy choice. Here robust indicates the scenario that produces the 

most favorable outcomes for the largest number of future conditions. This is done 

through a human subject study evaluating the impact of policy options on 

groundwater. The goal of this study is to evaluate whether users are able to both 

understand that implicit visualization includes uncertainty information, even if it 

is not explicitly shown, and use the information to evaluate policy choices. 

Responses were compared for policy decisions made using implicit and explicit 

visualization of uncertainty as well as no visualization of uncertainty. The human 

subject study specifically seeks to answer the following research questions: 

1. Does implicit visualization of uncertainty result in policy decisions 

that differ from explicit/no uncertainty visualization? 

2. Are implicit representations of uncertainty perceived as effective for 

evaluating the robustness of a policy decision?  

3. Do users interpret implicit visualization as being uncertain? 

The work in Chapter 4 poses an evaluation of effectiveness that differs from prior 

studies, focusing on the whether implicit representations produce different 

decisions from explicit methods, as well as whether users identify the 

representations as effective for evaluating the robustness of a policy choice for 
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future conditions. This differs from much of the prior research that defines 

effectiveness as correct responses, time to respond, or the ability to discover 

specific values. The reason for this change is that in decision making under 

uncertainty, there is often not a single correct response that works for all future 

conditions. This work suggests that for decision-making, effectiveness and 

usability do not always relate to the ability to extract specific uncertainty values, 

but should include support understanding of relationships between decisions and 

uncertainty. 

 

1.4 Dissertation Format 

There are five chapters in this dissertation, with three major chapters each being a 

separate first-authored manuscript. These were submitted as a book chapter 

(Chapter 2) and to peer-reviewed journals (Chapter 3 and Chapter 4) that 

frequently publish GIS and visualization articles. For each article, I was 

responsible for originating the research direction, questions, and/or objectives, as 

well as deciding on primary methodology, data collection, analysis, and 

discussion of results. This includes being the lead author, writing and formatting 

each manuscript for journal submission, as well as responding to referee and 

editorial comments during the peer-review process. Each chapter identifies the 

objectives of the paper, provides a literature review relevant to the theme of the 

paper, and when appropriate, discusses the methods for the research.  

The first chapter (Chapter 1) provides an introduction to the research and 

the specific topic of each article. Some of the work in Chapter 1 is also contained 
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in the articles presented in Chapter 2 – Chapter 4. There is no intention of 

submitting Chapter 1 for publication outside of this dissertation.  

Chapter 2 (Topic 1) presents a literature review and conceptualizes 

uncertainty as continuous outcome space, building upon visualization methods 

presented by Lempert, Popper, and Bankes (2003) for mapping Landscapes of 

Plausible Futures. The objectives of this chapter were to provide a foundation for 

the concept of continuous outcome spaces as a conceptualization of uncertainty 

for robust decision-making. This chapter was submitted as a chapter for 

Understanding Different Geographies (edited by K. Kriz et al) in 2010 and 

published as Chapter 10 in 2012.  

Chapter 3 (Topic 2) synthesizes literature in both visualization and 

decision science, to present a new conceptualization of uncertainty, termed 

explicit and implicit uncertainty, as a way to bridge this gap in understanding 

between GIS researchers and decision makers. Additionally, implicit visualization 

methods including outcome spaces and parallel coordinate plots are discussed. 

This chapter was coauthored with Elizabeth A. Wentz. As first author, I was 

responsible for writing and formatting each manuscript for journal submission. I 

will be responding to referee and editorial comments during the peer-review 

process. This work will be submitted to the Annals of the Association of 

American Geographers in May 2013.  

Chapter 4 (Topic 3) presents the results of the human subject study 

comparing implicit and explicit visualizations of uncertainty. The objectives of 

this chapter were to evaluate the effectiveness of implicit visualizations to 
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communicate uncertainty to decision makers, and support the evaluation of 

policies over a range of future conditions. This chapter was coauthored with 

Elizabeth A. Wentz, and submitted to Computers, Environment, and Urban 

Systems in November 2012. Review comments have been received, and I will be 

responding to the reviewer comments in May 2013. 

 A final concluding chapter (Chapter 5) summarizes the results and 

evaluates the contributions of the dissertation towards uncertainty visualization 

for decision support research. Some of the work in Chapter 5 is also contained in 

the articles presented in Chapter 2 – Chapter 4. There is no intention of submitting 

Chapter 5 for publication outside of this dissertation.  

Lastly, Appendix A contains the survey instrument and Arizona State 

University Institutional Review Board exempt study letter and Appendix B 

contains a statement of permission for including the co-authored manuscript in 

Chapter 3 and Chapter 4 as a chapter for this dissertation. 
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Chapter 2 

UNCERTAIN DECISIONS AND CONTINUOUS SPACES: VISUALIZING 

THE UNCERTAIN IMPACTS OF CLIMATE CHANGE FOR DECISION 

SUPPORT 

This chapter was originally published in Understanding Different Geographies 

(edited by K. Kriz et al) in 2010 and published as Chapter 10 in 2012. Changes 

made from the published work include minor editorial changes based on 

comments from the committee, including a new Figure 1, herein referred to as 

Figure 2.1, and a revision of Figure 5, herein referred to as Figure 2.5, to include 

explanatory labels. This work is not substantially changed, and will not be 

submitted to alternate publications.  

 

2.1 Abstract 

Scientific results serve as the foundation for public policy decisions in local and 

global society. Communicating these findings to policymakers poses an immense 

challenge, as information considered beneficial for evaluating a problem is very 

different for scientists and decision makers. This is especially true in decisions 

related to climate change mitigation and adaptation, where conflicting results and 

controversy leaves many decision makers questioning the veracity of results or 

waiting until uncertainty is reduced. This conflict does not support evaluation of 

policy alternatives meant to address causes and future effects of climate change. 

Robust decision-making offers a foundation for methods that include the context 

of uncertainty and decisions, by visualizing the relationship between uncertainty 
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and policy alternatives. This research presents outcome spaces as a method of 

implicit uncertainty visualization to represent the effect of uncertainty on policy 

outcomes. The uncertain impact of climate change on water policy serves as a 

case study for the visualization method presented here. Implementation of an 

outcome space in a water simulation model is presented here. Uncertain variables 

act as coordinates on x- and y-axes to produce a space of policy outcomes. This 

method of uncertainty visualization acts as an uncertainty map, representing all 

possible outcomes for specific policy decisions. This conceptual model 

incorporates two variables, but can be extended to multivariate representations. 

 

Keywords: uncertainty visualization, outcome space, decision support, decision 

frames 

 

2.2 Introduction: Communicating Uncertain Science 

Understanding scientific results is critical as policies informed by scientific 

expertise and developments can have far reaching impacts on society. More and 

more, public policy decision makers, as well as the public, are expected to 

consume scientific information to inform their opinions (Nisbet and Mooney, 

2007;Kahan et al., 2011). For many of these information consumers, knowledge 

of science comes through policy reports and recommendations, as well as science 

communications developed for non-science audiences. Often, there is little to no 

direct experiences with research activities or scientific journals (Corbett and 

Durfee, 2004;Smith, 2005). Individuals depend on these communications to 
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inform their decisions and expand their knowledge about the world beyond their 

experiences (Boykoff and Boykoff, 2007). Translating scientific knowledge into 

consumable information requires that often complex, sometimes contested or 

uncertain results, be distilled into easily digestible, seemingly certain facts and 

recommendations. Through this distillation of scientific knowledge, risk 

perceptions, attitudes, and actions are shaped, to some extent, by mediated 

scientific information (Carvalha and Burgess, 2005). This is especially true for 

issues that exist outside everyday experiences or that occur at a scale (either 

geographic or temporal) that seems “invisible” on an individual level, such as the 

impact of natural disasters, changes in the economy, outbreaks of disease, and 

climate change.  

Science communication plays a central role in the climate change dialog 

between scientists, policymakers, and the public (Nisbet and Mooney, 

2007;Kahan et al., 2011). This influences public perception and policy maker 

action (or inaction) in both climate change mitigation and adaptation. Mitigation 

is the reduction of environmental impacts and greenhouse gases in to the 

atmosphere to slow or stop anthropogenic contributions to climate change 

(Boykoff and Roberts, 2007). Adaptation is an adjustment in human systems in 

response to actual or anticipated climactic changes or their effects (Boykoff and 

Roberts, 2007). Communicating the science of climate change is important for 

encouraging policy actions in diverse policy areas including water conservation, 

alternative transportation, and environmental protection. However information 

such as explanations of risk, uncertainty, and the scientific process behind the 
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results (Carvalha and Burgess, 2005) are not easily incorporated by decision 

makers into their decision-making process. Moreover, the challenge of 

communicating uncertain science is complicated by competing and conflicting 

“scientific facts” that are often presented to decision makers though complex 

statistics and visualizations or bleak scenarios of future conditions. While these 

methods initially capture the attention of policymakers, they do little to help users 

incorporate scientific results into their understanding of the problem or the 

outcome of policy decisions. Furthermore, competing research reports and 

conflicting scientific findings often leave individuals questioning the veracity of 

results and whether it is better to wait in the hopes that uncertainty will be 

reduced (Council, 2007;O'Neill, 2008). However, holding out for more certainty 

does not guarantee that new methods or information will result in a reduction in 

uncertainty. Ultimately, these methods often fail to effect policy action (Abbasi, 

2005). This research speaks to the challenge of overcoming this desire to wait for 

more certainty, through methods that incorporate uncertainty in a manner that 

resemble decision-making processes. 

There are many sources of uncertainty in climate change science that end 

up part of policy decision making. Much of this often relates to what is unknown 

about the natural variability of climate systems and how changes in greenhouse 

gases and human behaviors affect these systems (Mearns, 2010). These 

uncertainties are often amplified in studies of future climate conditions, which 

rely on complex computer models meant to simulate the processes of global 

climate systems. These models must account for atmospheric, ocean, and land 
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surface processes. Although the development of these models has grown more 

sophisticated and robust, there are still many processes that remain unknown, 

difficult to represent or poorly understood. Moreover, when studies focus on 

climate at a larger scale, these climate models must be scaled down from a global 

to regional level. This process introduces new uncertainties, as scientists must 

translate global processes to local conditions. Scientists are often comfortable 

working with and interpreting these inherent uncertainties. Unfortunately, public 

policy decision makers tend to struggle to incorporate these uncertain conditions 

even though they often face uncertainty in other policy decisions (Pahl-Wostl et 

al., 2007;Brugnach et al., 2008). The key is to build on existing comfort with 

uncertainty in other decision settings by presenting current information and 

findings to policymakers in a manner that supports evaluating policy decisions 

and outcomes.  

Scientists and policymakers acknowledge the importance of developing 

methods to communicate uncertainty about climate science in ways that avoid 

misunderstandings and misuse (C.C.S.P, 2003;Nisbet and Mooney, 2007;Kahan 

et al., 2011). Existing approaches often follow a “predict then act” framework, 

starting with climate science and characterizing the uncertainty of future climate 

change, then using this information to evaluate the desirability of policy 

decisions. This is often the method familiar to scientists. However, there are other 

approaches, such as robust decision-making, that frame uncertainty in a way more 

usable by characterizing uncertainty in the context of the decision task and 

outcomes. Robust decision-making includes three key concepts that differentiate 
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it from the predict than act approach. First, instead of using a single view of the 

future, multiple views of the future characterize uncertainty. Second, robust 

decision making uses the idea of robustness rather than optimality to assess 

alternate policies, often focusing on tradeoffs instead of strictly ranking 

alternatives from best to worst. Lastly, this method identifies the uncertainty most 

important to the decision-making task. Particular decisions provide the context to 

characterize the uncertainty (Lempert et al., 2004).  

Most current methods for and research on visualizing uncertainty are 

explicit in nature  (Davis and Keller, 1997a;Davis and Keller, 1997b;Cliburn et 

al., 2002;Zhang and Goodchild, 2002;Aerts et al., 2003b;Devillers and Jeansoulin, 

2006b). Explicit uncertainty visualization directly identifies gaps, errors, and 

unknowns through quantitative values (including error bars or flows as shown in 

Figure 2.1) or qualitative estimations (as shown in Figure 2.2). Uncertainty is 

conceived of, and evaluated as, unique information, related to, but not the same 

as, the underlying data. Often, these values are not clearly or easily related to the 

decision task or the potential outcomes of policy decisions.  

 
Figure 2.1. Uncertainty shown through scaling the size of glyphs (a), varying 
glyph color (b), using color to represent uncertainty (c), and error bars (d) (Sanyal 
et al., 2009) 

 



45 

 

Figure 2.2. Lyme disease prediction uncertainty depicted as confidence 
(Luengo, 2008) 

 

Implicit uncertainty visualization, by contrast, is context dependent. The 

specific decision task informs the definition, interpretation and, potentially, the 

representation of the uncertainty. Here, specific values of uncertainty are not 

quantified, but instead representations focus on showing the effect of uncertainty 

on policy decision outcomes. Uncertainty is treated as an inherent attribute of the 

data, and not as separate information. In this way, implicit uncertainty 

visualizations are similar to composite indicators in sensitivity analysis (Lilburne 

and Tarantola, 2009;Paruolo et al., 2012) aggregating uncertainty and decision 

outcomes, which support increased understanding of the relationship between 

uncertainty and decisions, provide a visual method to evaluate the robustness of a 

decision in the face of uncertainty, and enhance communication of uncertainty 

and outcomes between scientists and decision makers. Reframing uncertainty in 
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this way, it is possible to explicitly define uncertainty (such as providing 

probability for a projection), and then use implicit methods for visualizing that 

uncertainty (visualizing the range of probability values for several different 

projections).   

Outcome spaces visualize outcomes and uncertain variables as a 

continuous variable space. For a given policy decision, possible outcomes are 

plotted for the full range of values for two or more uncertain variables considered 

significant to the decision problem. For example, in water simulation, future 

projections for river discharge might range from a decrease of 10 percent to an 

increase of 30 percent (this represents the uncertainty in the decision problem). In 

traditional approaches, if water managers wished to evaluate the impact of a 

policy on ground water, they would have to run the model several times for each 

potential discharge value, for a single policy scenario. Each model run would 

result in one discrete ground water value. Evaluation of the outcome of one or 

more policy decisions requires comparing these outputs. Outcome spaces in 

contrast, visualize the full range of possible outputs for one or more uncertain 

variables for a given policy scenario. This method represents outcomes of policy 

decisions for all possible values of the uncertain variable(s), providing a 

continuous range of outcomes. Classifications such as sustainable/unsustainable, 

favorable/unfavorable, high/moderate/low risk offer a means for decision makers 

to compare projected results for multiple policy scenarios. Figure 2.3 presents a 

schematic outcome space. With this approach, the policy decisions no longer 

produce single discrete outcomes, but a continuous field of possibilities.  
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Figure 2.3. Implicit representation of uncertainty visualized as continuous values 
in an outcome space. Uncertain variables considered important to the decision 
problem are used as the axes. A model is run for the full range of uncertain values 
based on a set of policy decisions. The resulting outcomes for all model runs are 
shown as a continuous field in the outcome space.  
 

Outcome spaces frame uncertainty in the context of a specific decision 

problem, similar to methods in robust decision-making. Individuals frame 

decisions based on their experiences, opinions and understanding of a problem. 

Accounting for these decision frames requires tailoring information to specific 

audiences, decisions, and mediums (Nisbet, 2009). Framing helps users relate 

core ideas to their own experiences, by placing uncertain information in context 

and making it relevant to the decision problem. Greater emphasis is placed on 
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some pieces over others to narrow down complex questions. Technical details 

vital to the understanding of science may not matter when deciding what should 

get done, who should do it, or why an issue even matters (Nisbet and Mooney, 

2007). In water management, for example, the specific range of discharge values 

may not matter to decision makers, while the range of ground water draw down 

which results from these uncertain values might prove very important in making 

policy decisions on water rationing.  

This chapter describes outcome spaces as a method for communicating 

uncertainty in climate change science to decision makers. As a context dependent 

approach, this chapter begins with a review of uncertainty in climate science and 

existing methods for communicating uncertainty.  

 

2.3 Uncertainty in Climate Science Research 

Climate models use quantitative methods to simulate the interactions of complex 

processes in the atmosphere, oceans, and land surfaces, projecting factors that 

would influence future conditions, such as population, land use, technology, and 

economic development. Simulations of future climate under climate change 

conditions contain a range of uncertainties in the spatial structure, scale, and 

timing of events and changes. These uncertainties result from numeric and 

structural differences between models, biases in datasets, and unknown processes 

in environmental and climate systems (Wu et al., 2005;Mearns, 2010). Assessing 

the suitability of a given model requires researchers to quantify several sources 

and forms of uncertainty within individual models as well as between models (Wu 
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et al., 2005;Mearns, 2010). Evaluation of these uncertainties presents the 

challenge of identifying specific probabilities for each model and input variable 

(Mearns, 2010). 

Climate models provide discrete predictions about future climate 

conditions. While researchers strive to develop better models as well as 

quantifications of statistical uncertainty, identifying methods to weight these 

results based on the quality of the model and inputs are not widely used. The 

International Panel of Climate Change (IPCC) reports, for example, use multiple 

emission scenarios for future climate conditions, each with different assumptions 

(Ha-Duong et al., 2007;Schenk and Lensink, 2007). Models based on these 

assumptions are given equal weight, assumed to provide the same level of 

information about future climate conditions. Without guidance on how to interpret 

these multiple models, decision makers are left with multiple climate scenarios to 

consider, without any indication regarding the veracity of any one scenario (Ha-

Duong et al., 2007;Schenk and Lensink, 2007). Future climate projections from 

each model developed using these emission scenarios, as well as how the 

differing assumptions of the scenarios affect outcomes of policy decisions in the 

model, are a form of implicitly defined uncertainty. 

Research into the uncertainty of projections (outcomes) that results from 

comparing output from differing models exists, but efforts focus on manipulating 

the inputs to the models and quantitatively describing differences in the outputs as 

discrete uncertainty descriptions. For example, in an effort to explore the 

uncertainty of a hydrologic model of the River Thames, New et al. (2007) applied 
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probabilistic information while varying the parameters of the model. The 

researchers evaluated the difference in the predicted discharge as a means to show 

the uncertainty of the outputs. While the methods allowed researchers to identify 

both positive and negative changes in predicted flows, which differed from the 

single parameter runs of the model, these outputs exist as information separate 

from the underlying uncertainty. This explicit evaluation does not produce 

information about the relationship between the range of uncertainty and future 

river discharge projections. Providing this information offers a step towards 

integrating climate uncertainty into the process of decision-making.   

 

2.4 Framing Uncertain Science for Decisions Under Uncertainty 

Decision-making is the process that people go through to choose between 

alternatives or courses of action. Research in the psychology of decision-making 

focuses on the processes through which beliefs (knowledge, expectations) and 

desires (personal value, goals) merge and result in a decision (Hastie, 2001). 

Decision problems are defined by the alternatives, consequences, and 

probabilities involved with a particular decision. Characteristics of the decision 

maker heavily influence individual decisions. Individuals frame decisions based 

on the concepts and values they associate with a particular course of action 

(Tversky and Kahneman, 1981). This reliance on context means people may 

frame a decision in many ways. Different decision frames arise due to many 

factors, such as individuals with multiple goals, or by a group of decision makers, 



51 

with each member having different experiences, expectations, and conceptual 

understanding of the problem.  

Decision-making under uncertainty involves the evaluation of both the 

likelihood and desirability of an outcome (Tversky and Fox, 1995). However, this 

often proves challenging as decisions are generally made without a definitive 

knowledge of all the factors that may influence an outcome. When faced with 

decisions under uncertainty, individuals often revert to heuristics, or abstract 

mental rules to determine a course of action. Heuristics efficiently generate 

satisfactory outcomes in frequently encountered situations, as individuals learn to 

apply heuristics that result in the most favorable outcomes, reducing the 

complexity of assessing the alternatives and potential outcomes in these 

frequently met problems. Of course, there is no guarantee that, in any specific 

instance, heuristics are applicable for new situations or problems or will always 

generate the most favorable outcome (Patt and Zeckhauser, 2000). Because they 

are used and reused in different situations, incorrect heuristics can result in 

systematic errors and bias in decision-making (Tversky, 1974;Tversky and 

Kahneman, 1974). 

 This aptly describes decision problems that consider the impact of climate 

change, while illustrating the complexity of integrating climate into policy 

solutions. Decision-making requires evaluation of both the likelihood and 

desirability of an outcome. As mentioned previously, specific likelihood 

(probabilities) of climate models, conditions or relationships are often unknown. 

When expected or necessary information is missing, attempts to apply existing 
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heuristics using information contrary to your decision frame may fail or result in 

poor decision-making results.  

 Applying decision frames to science communication is working its way into 

applied research in decision-making under uncertainty. For example, in robust 

decision making, decision makers evaluate the outcomes of policy actions across 

a range of future possible conditions (uncertainties), building on decision makers 

experience managing highly uncertain situations while identifying and selecting 

strategies that perform well across the range of uncertainties. Groves and Lempert 

(2007) implemented robust decision-making in work with water mangers in 

California to identify water policy options that were robust against the uncertainty 

of future climate change (Groves and Lempert, 2007;Groves et al., 2008). 

Researchers found that providing the water managers with climate change 

scenarios that represented a reasonable range of future conditions allowed 

managers to assess possible adaptation strategies. This model of decision support 

allows users to explore the relationship between a range of uncertain conditions 

and decision outcomes.  

 

2.5 The Complexity of Uncertainty Communication 

Visual displays mediate the assessment and dissemination of scientific knowledge 

(Cleveland, 1984a;Cleveland, 1984b;Arsenault et al., 2006). Visualization can 

convey complex and dense information, not easily communicated through the 

written word, and as such, has been the focus of much research in the visual 

communication of science (Tufte, 1983;Cleveland, 1984b;Hedges, 1987). There 
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are many reasons that visual displays are powerful means to support the 

dissemination and validation of scientific knowledge. First, they are absolute, 

transforming abstract ideas and ephemeral phenomenon into fixed, invariable 

patterns discernible by a wide range of individuals, scientists, and the public alike. 

Second, they quickly convey an overall impression of research, accessible without 

a great deal of effort by the user. Visual displays effectively use human capacity 

for pattern recognition to make complex, often dense information that might 

otherwise be difficult to communicate through words alone, more easily 

accessible. Third, they are scalable, allowing the visualization of phenomenon 

that might otherwise be unknowable due to their abstract, temporal, or physical 

scale. Finally, visualizations can be combined, allowing the identification of 

relationships and connections that might otherwise be undiscovered (Arsenault et 

al., 2006). These characteristics lend to the critical role of visualization in science 

communication—they are powerful because they are persuasive (Latour, 1990). 

Visual representation supports the task of supporting validity of an individual’s 

scientific work. As such, visual inscriptions are central in science communication. 

Uncertainty visualization research exists in diverse application areas  

(Hunter and Goodchild, 1995;Goodchild, 2000;Lucieer and Kraak, 

2004;Heuvelink, 2005;Devillers and Jeansoulin, 2006b;Goovaerts, 2006) from 

error propagation to identifying uncertainty in climate science, yet approaches to 

representing uncertainty are often similar. Much of this research addresses 

uncertainty from a scientific standpoint, representing uncertainty in explicit and 

quantifiable ways, with the intention of developing widely applicable methods of 
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representation (Davis and Keller, 1997a;Cliburn et al., 2002;Zhang and 

Goodchild, 2002;Aerts et al., 2003a;Aerts et al., 2003b). In decision support, 

statistical and complex scientific representations may not be usable or beneficial 

for developing insights about the relationships between uncertainty, decisions, 

and outcomes. Moreover, while uncertainty visualization is considered either 

irrelevant or detrimental for successful data communication and insight 

generation (Cliburn et al., 2002;Slocum et al., 2003;Brugnach et al., 2007), 

decision makers often view uncertainty as potentially integral to the framing of a 

problem (Pahl-Wostl et al., 2007;Brugnach et al., 2008). This contradictory view 

of the uncertainty visualization as detrimental and uncertainty (not visually 

represented) as beneficial suggests that in decision support settings, a general 

awareness of the presence of uncertainty may be more important than knowing 

the specific form (or quantity) of uncertainty. 

 Several efforts in recent cartographic research have sought to bridge the gap 

between research and application as a means to facilitate the incorporation and 

use of visual uncertainty information (Cliburn et al., 2002;Aerts et al., 

2003a;Bisantz et al., 2011;Verstegen et al., 2012). Researchers have sought the 

most appropriate and effective means of representing uncertainty to map readers, 

carrying out experiments comparing representational techniques (Blenkinsop et 

al., 2000;Slocum et al., 2003;Viard et al., 2011). A common approach is to begin 

with the adaptation of Bertin’s (1983) visual variables, along with additional 

variables such as transparency, saturation, and clarity, for the representation of 

uncertainty (MacEachren, 1992;Slocum et al., 2004). Advances in computer 
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systems open new possibilities for uncertainty representation, including the 

interfaces that allow users to manipulate the display of uncertainty by deciding 

how and when to display uncertainty information (Fisher, 1994;Ehlschlaeger et 

al., 1997;Miller et al., 2003). 

 A majority of existing research focuses on explicit uncertainty visualization. 

For instance, Gershon (1998) proposed two general categories of representation 

strategy: intrinsic and extrinsic. Both categories rely on an explicit definition of 

uncertainty. Intrinsic techniques integrate uncertainty in the display by varying an 

existing object’s appearance to show associated uncertainty. Although the 

uncertainty and “object” are depicted in a single representation, for example fuzzy 

lines to represent vague boundaries, uncertainty is still shown as separate from the 

underlying feature. Extrinsic techniques rely on the addition of geometric objects 

to highlight uncertain information, making the explicit nature of the visualization 

apparent through the use of separate objects to depict uncertainty. Explicit 

methods (including both intrinsic and extrinsic visualization) offer techniques for 

representing uncertainty of specific features or objects. Implicit visualization 

integrates the representation of uncertainty, data, and decision outcomes. 

 Often the individual decision frames of the user are not considered in 

current uncertainty visualization research. Moreover, when the importance of 

potential differences in users has been acknowledged, it is often included as an 

ancillary study, and not as the explicit and main focus of the study. The primary 

focus of most experiments has been on design of the representation and the ability 

of individuals to identify specific uncertainty values from those representations. 
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MacEachren et al. (1998) developed and tested a pair of intrinsic methods for 

depicting “reliability” of data on choropleth maps used in epidemiology. Newman 

and Lee (2004) evaluated both extrinsic and intrinsic techniques for the 

visualization of uncertainty in volumetric data comparing glyph-based techniques, 

such as cylinders and cones, with color-mapping and transparency adjustments. 

Leitner and Buttenfield (2000) focused on the alteration of the decision-making 

process by changing the representation, through systematically altering Bertin’s 

visual variables. In these cases, researchers made important gains in 

understanding the development of uncertainty visualization, but the usability of 

these visualizations by individuals trying to assess data for decision-making under 

uncertainty was never a particular focus. 

 Geographic uncertainty visualization research has also considered the 

influence of the user’s experience as an independent variable (Blenkinsop et al., 

2000;Cliburn et al., 2002;Aerts et al., 2003a). In these studies, the focus has been 

on differences between novice and expert users, while factors such as comfort 

with uncertain information and their experience in making decisions are often 

downplayed. Blenkinsop et al. (2000) examined the performance of two user 

groups, one expert, and one novice, in determining classification uncertainty. 

While researchers discussed differences in users, results focused on the 

effectiveness of representation and not the manner in which different user 

experience influenced this effectiveness. Cliburn et al. (2002) focus on differences 

in decision makers in their development and testing of a visualization 

environment meant to allow decision makers to visualize the results of a water-



57 

balance model. The study focused specifically on the effectiveness of intrinsic and 

extrinsic communication of explicit uncertain values in a decision support setting. 

Decision makers were overwhelmed by the complex extrinsic methods, while 

experts were able to access and use the detailed information more readily. For 

non-expert users, intrinsic methods that provide a more general representation of 

uncertainty were suggested as preferable to more complex and detailed forms of 

representation. Researchers proposed that to increase the usability of an 

environment, it is important to incorporate feedback from users, usability experts, 

and decision makers. Aerts et al. (2003a) also focused specifically on what 

uncertainty representations, toggling animation and a side-by-side static 

comparison, end users found most useful for specific tasks. 

 While there are a multitude of examples in existing literature of statistical 

and explicit representation of uncertainty, methods for linking uncertainty 

visualization and decision outcomes are lacking. In decision support settings, the 

goal is to support more informed judgments and evaluations by decision makers, 

and to provide insight into the effect of uncertainty on policy options. Existing 

methods do not offer means to evaluate or explore uncertainty in this manner. The 

disjoint between attitudes towards uncertainty and uncertainty visualization 

suggests that existing methods do not fit user decision frames. As previously 

discussed, decision frames encompass the perspectives used by decision makers 

to establish the boundaries and constraints of a decision problem and particular 

course of action (Tversky and Kahneman, 1981). In decision settings, focusing on 

the effect of uncertainties on policy outcomes offers a method to incorporate user 
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decision frames, allowing users to explore uncertainty and gain insight into the 

relationship between uncertainty and the (potential) consequences of their 

decisions. When reframing uncertainty in this way, the relationship between 

uncertainty visualization, outcomes, and decisions is emphasized over explicit 

representation frameworks that disassociate the method from the user.  

 

2.6 Uncertainty Visualization as an Outcome Space 

This research considers the application of outcome spaces as a method to 

visualize uncertainty in water planning due to climate change. A conceptual 

outcome space was developed for WaterSim, a simulation model of water supply 

and demand for the Phoenix Metropolitan area that integrates land use, climate 

change, water policy, and population growth. WaterSim allows users to adjust 

settings related to water supply, drought, population growth, agriculture, policy 

choices, and climate change to weigh the impacts of these choices on future water 

supply and sustainability (Gober et al., 2010).  

Water systems are traditionally operated under the assumption of 

stationarity—the idea that natural systems fluctuate within an envelope of 

variability that does not change (Milly et al., 2008). Climate change challenges 

the stationarity assumption; as these changes alter the rate of river discharge, 

mean precipitation, and other aspects of the water cycle and water supply. 

Considering the implications of climate change on stationarity challenges the 

decision frames of water managers, often requiring them to evaluate multiple 

discrete scenarios based on varied climate change assumptions (Milly et al., 
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2008;Craig, 2009). Uncertainty visualization offers an opportunity for decision 

makers to explore the relationship between climactic uncertainty (a challenge to 

the stationarity assumption) and the outcomes of policy decisions. This approach 

adapts the methods of robust decision-making by providing a visual method to 

evaluate the relationship between uncertainty and policy outcomes. The methods 

presented here conceptualize this relationship as a mapped space, where the 

impact of uncertain variables on decision outcomes can be explored.  

Outcome spaces are adapted from visualization methods presented by 

Lempert, Popper, and Bankes (2003) for mapping Landscapes of Plausible 

Futures. The landscapes provide decision makers with interactive visualizations 

intended to aid in exploration of the output of robust decision-making scenarios. 

In these landscapes, the axes represent two uncertain variables important to the 

decision problem. Each intersection point between values on the axes represents 

the outcome of a given decision. The area within the landscape represents all 

possible outcomes (defined in this research as the outcome space) that can further 

be classified as regions of most/least robust outcomes. 

 For the purposes of this application, uncertainty is operationalized as the 

effect of climate change on the assumption of stationarity, in this case, changes to 

the historical flows in the Salt/Verde Rivers and the Colorado River. For 

WaterSim, the outcome space consists of the net cumulative change in 

groundwater (in thousand cubic meters) resulting from running a single set of 

policy choices in WaterSim. Instead of geographic coordinates, the uncertain 

variables represent the coordinates (on each axis), and the value in the outcome 
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space represents the attribute at that locations. This method of uncertainty 

visualization acts as an uncertainty map, representing all possible outcomes for a 

specific policy choice or decision based on two uncertainty variables. The 

conceptual model here incorporates two variables, but can be extended to 

multivariate representations.  

 With existing methods in WaterSim, users must select a single assumption 

for the future flow of the Salt/Verde River and Colorado River. These 

assumptions represent predicted percentages of historical flows on these rivers, 

such as 80% of historical flow, and account for the impact of climate change on 

flow. Once these assumptions are set, users use the model to select policy choices 

related to future population growth, agricultural land retirement, and residential 

housing density. The model is run for each set of policy choices using the 

assumed percentage of historical flows on the two river systems. If users want to 

see how changes in the assumptions about the rivers affect their policy decisions, 

they must rerun the model for each new assumption. This can result in thousands 

of possible outputs.  

Outcome spaces eliminate the need to run the model for different 

assumptions about the flows on the rivers. Instead, policy decisions made by the 

user are run for all the possible combinations of future flows on the two rivers. 

These results are then output into a single outcome space for that policy run. A 

conceptual representation of an outcome space for WaterSim is shown in Figure 

2.4. Actual outputs from WaterSim into a visualization environment are shown in 

Figure 2.5. 



61 

 

Figure 2.4. Conceptual outcome space showing change in ground water based on 
uncertain river flow 
 

The vertical and horizontal axes of the landscape represent the future 

flows of the Salt/Verde Rive and the Colorado River as percentages of historical 

flows (Figure 2.5). This represents two of the significant uncertainty variables in 

the WaterSim model, incorporating the uncertain affect of climate change on river 

flow (one challenge to the stationarity assumption). The outcome space represents 

the net cumulative change in groundwater. The values mapped in the outcome 

space are output when the model is run after the selection of certain policy 

decisions, such as regulation of future population growth rates, retirement of 

agricultural land, and residential density. As the policy decisions are implemented 
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in WaterSim, the model runs for all possible river flows for the two rivers, 

resulting in thousands of outputs. These outputs are then mapped to the outcome 

space. This one space represents the full range of outputs for the specified policy 

choices. Additionally, areas within the outcome space are symbolized using a 

range of sustainable to not sustainable based on the amount of change in ground 

water usage. 

 

 
Figure 2.5. WaterSim outcome space (conceptual visualization 
environment). The values here represent a single policy decision 
implemented by the user run for all combinations of projected flows 
on the Salt/Verde River and Colorado River. 

 

 

 

Low River Flow
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While the individual values mapped in the outcome space are discrete 

values from single runs of the model, when viewed as a continuous space, they 

present an overall view of the impact of both the policy choices and the climate 

uncertainty. As decision makers work through several possible policy alternatives, 

they can evaluate results for the entire range of possible output for those policy 

choices. This offers a chance to alleviate the concern that a policy choice that 

works well under one climate scenario (or one set of river flows) may not be the 

best choice under alternate conditions. Additionally, decision makers can compare 

the overall effect of differing policy decision, and question whether one policy 

poses more or less risk than another. For example, if one set of policy choices 

results in a majority of the outcome space showing as sustainable, that might pose 

less risk than policy choices that divide the outcome space evenly into 

sustainable/not sustainable. This removes the focus from climate uncertainty and 

places it on the actual policy choices and alternatives that make up the decision 

problem.  

 

2.7 Conclusions 

Scientists are challenged with the task of not only communicating uncertain 

science results to policymakers, but of providing information in a manner that 

overcomes the desire of decision makers to wait until more is known or the 

uncertainty is reduced (O'Neill, 2008). This research speaks to the challenge of 

overcoming this desire to wait to learn more, by evaluating methods to 

incorporate uncertainty that resemble decision-making processes and heuristics. 
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Outcome spaces support assessment of the relationships between uncertain 

variables and the results of policy decisions. Representing uncertainty implicitly 

as a physical space moves away from discrete results that imply a level of 

certainty to a continuous range of results that reflect the influence of uncertainty 

on policy outcomes. This allows decision makers to focus attention on the policy 

decisions and not on the technical aspects of what is unknown. Outcome spaces 

do not hide anything from decision makers, but instead provides a comprehensive 

representation in a context with which they are familiar, policy decision 

outcomes.  

 This research highlights the importance of considering the decision-making 

context of the user when evaluating and presenting uncertain information. 

Attempts to develop methods for representing uncertainty that span multiple 

forms and sources, varied domains, and all users do not address the decision 

frames of users or context of the decision problem. Outcome spaces address both 

the need to communicate uncertainty to users while also allowing them to work 

through ways to address uncertain conditions. If the goal is to support effective 

decision-making, and ultimately action towards mitigating and adapting to climate 

change, then the challenge of incorporating specific decision contexts into science 

communication is one with tangible benefits.  
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Chapter 3 

USING DECISION THEORY MODELS TO CONEPTUALIZE AND 

DEVELOP UNCERTAINTY VISUALIZATION METHODS 

This chapter will be submitted to the Annals of the Association of American 

Geographers in May 2012. This work was co-authored with Elizabeth A. Wentz. 

As first author, I was responsible for writing and formatting the manuscript for 

journal submission. I will respond to referee and editorial comments during the 

peer-review process.  

3.1 Abstract 

Public policy decision makers often contend with uncertain conditions and 

data. GIS and geovisualization researchers acknowledge the importance, 

and ubiquitous nature, of uncertainty in geographic data. Although there 

appears to be agreement between decision makers and researchers in the 

presence and importance of uncertainty in decision support, there appears to 

be a disjoint in approaches to incorporating uncertainty into decision 

models, and the resulting decision support tools.  

Uncertainty for both decision makers and GIS researchers refers to 

incompleteness in knowledge in the past, present, or future. The distinction 

between decision makers and GIS researchers, however, does not arise from 

how they define uncertainty, but in how they conceptualize uncertainty. 

Decision makers regularly contend with uncertainty in how current 

conditions or proposed policies will affect the future, resulting in a 
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generalized concept that relates uncertainty of future conditions to policy 

outcomes. For GIS and geovisualization researchers, uncertainty more often 

reflects what is not known about the relationship between a measured or 

predicted value and the actual or true value, resulting in a generalized 

concept of uncertainty that covers a wide range of data characteristics such 

as error, accuracy, and reliability. This work contends that the gap between 

research and practice (Brown and Vari, 1992) stems from this difference in 

conceptualization.  

To bridge the gap between these conceptualizations of uncertainty, we 

examine in detail how decision makers conceptualize uncertainty and then 

identify visualization methods, referred to as implicit uncertainty visualization, 

that reflect this view of uncertainty. Approaching uncertainty visualization 

research through the lens of decision science creates a new approach to 

uncertainty, which can make sense to decision makers as well as GIS and 

geovisualization researchers. Bridging the gap in the conceptualization of 

uncertainty opens up opportunities for GIS and geovisualization researchers to 

develop uncertainty methods and tools that help decision makers better deal with 

uncertainty in practice. 

Keywords: uncertainty visualization, decision-making models, decision support 

 

 

 



74 

3.2 Introduction 

Public policy decision makers, defined here as individuals who have useful 

decision-making knowledge or the ability to enact a policy, understand that 

uncertainty is an inescapable component of decision-making (Lipshitz and 

Strauss, 1997;Maidment and Parzen, 1984;Schlossberg and Shuford, 2005;Dong 

and Hayes, 2012).  Similarly, GIS and geovisualization researchers recognize the 

importance of identifying and evaluating uncertainty in analysis and outputs for 

decision support (MacEachren, 1992;MacEachren et al., 1998;Blenkinsop et al., 

2000;Bastin et al., 2002;Bostrom et al., 2007;Goodchild, 2007;Moss, 

2007;Pebesma et al., 2007). Nevertheless, specific visualization methods and 

tools for incorporating uncertainty into GIS are not widely used or requested by 

decision makers (Goodchild, 2006;Roth, 2009). Moreover, research indicates that 

decision makers often view these types of uncertainty representations as a 

constraint to making decisions, which may lead them to avoid solutions that 

employ uncertain information or to overly rely on the results of prior similar 

decision tasks (Cohen and Wallsten, 1992;Reece and Matthews, 1993). Because 

there is agreement between decision makers and GIS and geovisualization 

researchers that uncertainty is important, yet disagreement in how to incorporate it 

into decision models, we see this as a discrepancy between the way decision 

makers and GIS researchers conceptualize uncertainty.  

 Uncertainty for both decision makers and GIS researchers is defined as 

incompleteness in knowledge in the past, present, or future. The distinction 

between decision makers and GIS researchers, however, does not arise in the 
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definition of uncertainty, but rather in how it is conceptualized. This distinction 

emerges through specific experiences with uncertainty, resulting in differing 

generalized uncertainty concepts. Decision makers regularly contend with 

uncertainty in how current conditions or proposed policies will affect the future. 

The resulting generalized concept of uncertainty is that the outcomes of differing 

policies are impacted by future conditions. For GIS researchers uncertainty more 

often reflects what is not known about the relationship between a measured or 

predicted value and the actual or true value. The generalized view of uncertainty 

therefore covers a wide range of data and model output characteristics, including 

error, accuracy, reliability, precision, and quality (Edwards and Nelson, 2001).  

 To bridge the gap between these conceptualizations of uncertainty, we 

examine in detail how decision makers conceptualize uncertainty and then 

identify visualization methods that reflect this view of uncertainty. In particular, 

we examine decision making under conditions of deep uncertainty (Cox, 2012). 

Deep uncertainty refers to conditions where the relationships between variables, 

the probability of future conditions, and the suitability of alternative outcomes are 

either unknown or are not agreed upon among key constituents (Lempert et al., 

2003). Through literature in both decision science and uncertainty visualization, 

this work presents implicit uncertainty visualization methods (Deitrick, 2012) as a 

way to connect researchers’ and decision makers’ understanding of uncertainty 

for use in GIS for decision support. 
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3.3 Literature Review 

To motivate our approach to develop geovisualization methods that utilize 

theories in decision science, the literature presented here synthesizes prior work in 

two distinct areas. We begin with a detailed review of the decision science 

literature. We then describe how this work is related to current uncertainty 

visualization approaches.  

 

3.3.1 Decision Making Under Uncertainty 

Decisions, particularly those with associated uncertainty, represent often ill-

structured problems in which the decision maker assesses two or more 

alternatives and then commits to one  (Jonassen, 2012). For example, decisions of 

where to dispose of nuclear waste safely are ill structured in nature; there are 

conflicting data, participants often do not agree about appropriate assumptions, 

and there are often conflicting values. The process to evaluate alternatives and 

commit to a single choice as a course of action is a merger between individual 

expectations, motives, beliefs, and desires (Hastie, 2001). This impacts decision-

making by influencing the way individuals evaluate the consequences of their 

choices (Hastie, 2001).  

Most policy-based decision problems are complex and contain inherent 

uncertainty. These problems require iterative decision-making, where the 

selection of an alternative lays the foundation for evaluating the next decision. For 

example, a city’s decision to restrict water usage would lead to additional 

decisions about how and when to implement restrictions. 
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 There are three decision science theories that explain how and why people 

make decisions in conditions with uncertainty. Normative models focus on how 

people should make decisions in order to facilitate better decisions through 

structured analysis. Conversely, descriptive models focus on how people actually 

make decisions in practice. Prescriptive models focus on what actual decision 

makers can and should do, incorporating both the specific context of the decision 

problem and the needs of the decision maker. In this way, prescriptive models are 

based on both normative and descriptive theory. We describe these three models 

in detail here. 

 

3.3.1.1 Normative Decision Making Models 

Normative decision making models describe how decisions ought to be made. In 

normative models, decision are divided into four basic components: (1) 

alternatives, (2) possible future conditions of the world, (3) probabilities of the 

future conditions of the world, and (4) information about outcomes of the 

alternatives under differing future conditions (Jonassen, 2012). These models 

assume decision makers are rational, capable of working through complicated 

decisions, fully informed, and that the uncertainties and probabilities for given 

alternatives are agreed upon, knowable and known. The goal of normative 

theories of decision-making is not to explain or predict behavior, but to facilitate 

better decisions through structured analysis of decision alternatives and the 

probabilities associated with those alternatives (Schmoldt, 2001).  
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Computer-based decision support tools designed to support decision-

making under uncertainty are often normative in nature, focusing on identifying, 

quantifying, and explicitly representing probability and uncertainty (Ascough II et 

al., 2008;Manson et al., 2002;Sevcikova et al., 2007). For example, a widely 

known decision support tool is UrbanSim, which consists of nine individual 

models that integrate household location and mobility, economic location and 

mobility, employment location and mobility, land pricing, real estate 

development, and transportation (accessibility). Sevcikova et al.  (2007) 

developed probability methods for assessing uncertainty in UrbanSim in the land 

use and transportation policies. They found that significant sources of uncertainty 

in the system must be identified to carry out a probabilistic assessment of 

uncertainty. This approach assumes that the uncertainties are known, knowable, 

or agreed upon by those involved in the decision task, and that decision makers 

can rationally work through the these probabilities to reach a decision. These 

assumptions are normative in nature.  

While the normative approach is beneficial for decisions where 

uncertainty can be identified and quantified through specific probability 

distributions such as the UrbanSim example, this poses a significant disadvantage 

for decision-making under conditions of deep uncertainty. Deep uncertainty exists 

in decisions where there is disagreement on the state of future conditions and the 

probability distributions of alternatives and outcomes cannot be known or agreed 

upon (Gober et al., 2010;Lempert et al., 2003). Under conditions of deep 

uncertainty, the information needed to identify the optimal solution cannot be 
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agreed upon or often do not exist (Polasky et al., 2011). This leads to challenges 

in developing probability based decision support tools for complex, deeply 

uncertainty problems, such as climate change, economic futures, and 

transportation infrastructure planning.  

 

3.3.1.2 Descriptive Decision Making Model 

Descriptive models of decision-making, in contrast to normative models, explore 

how people actually make decisions. In practice, decision makers rarely select 

alternatives based on purely rational choices the way normative models suggest, 

but instead base decisions on information about the decision alternatives 

combined with affective feelings and emotions about those alternatives (Slovic et 

al., 2004;Slovic et al., 2007). This is particularly true for decision makers who 

have had prior experience in the particular decision-making situation. In domains 

where decision makers are knowledgeable about decision problems, they have 

beliefs, biases and experiences with those problems, resulting in decisions that are 

context and domain dependent(Cohen and Freeman, 1996;Rettinger and Hastie, 

2001;Jonassen, 2012). Research into descriptive models of decision making 

describe the influence of framing and heuristics, which we explain here.  

In descriptive models, decision problems are framed by the current 

conditions (context and domain), unconscious emotions, past experiences and 

expectations a decision maker associates with a particular course of action 

(Goffman, 1974;Tversky and Kahneman, 1981;Gamson et al., 1992;Bedford and 

Burgess, 2001).  Framing refers to the different ways decision makers make sense 
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of a decision problem, by selecting the relevant aspects, connecting those into a 

meaningful whole, and identifying the boundaries of the problem (Takemura, 

1994;Bedford and Burgess, 2001;Dewulf et al., 2004). The frame adopted by a 

decision maker is controlled both by the presentation of the problem (external) 

and the personal characteristics, experiences, biases and beliefs of the decision 

maker (internal) (Goffman, 1974;Tversky and Kahneman, 1981;Gamson et al., 

1992;Takemura, 1994;Bedford and Burgess, 2001).  

Different decision frames arise due to many factors, such as one person 

who has multiple or changing goals, or by many different decision makers, each 

having different perspectives, experiences, or conceptual understandings of the 

problem (Jonassen, 2012). For example, when presented with a plan to open a 

previously closed preserve to recreational activities, developers, environmentalists 

and policy makers might frame the plan in different ways. The developer may see 

the plan as a way to build amenities on the way to the area, the environmentalist 

might view the plan as a threat to the habitat, and the policy makers might see the 

plan as an opportunity to bring new visitors to the city and increase tax revenue. It 

is the same plan, but framed differently based on the desires, experiences and 

biases of the individuals.  

There are mixed opinions about the effect of external framing on the 

ultimate decision made. Tversky and Kahneman (1981) show that the manner in 

which a decision problem is presented to decision makers, such as whether it is 

framed positively or negatively, can influence the way decision makers approach 

a problem, and ultimately their decision (referred to as the framing effect). 
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Takemura (1994), in contrast, suggests that the more a decision maker clarifies 

and works through the information involved in the decision problem, the less 

likely framing effects would occur. This is relevant for decision making under 

deep uncertainty where decision problems, data, and alternatives may be 

extensively reviewed and debated.  

Descriptive models of decision making also refer to the use of heuristics, 

or abstract mental rules, to describe how decision makers determine a course of 

action. Individuals learn to apply heuristics that have in the past resulted in 

favorable outcomes. This approach reduces the complexity of assessing 

alternatives and potential outcomes in frequently met problems (Patt and 

Zeckhauser, 2000;Spiegelhalter et al., 2011). Heuristics can be evolutionary 

(partially hard wired), developed through individual learning, or selected and 

taught through social processes (Gigerenzer and Gaissmaier, 2011). For example, 

the heuristic of imitating the successful, speeds up learning about uncertain 

decision problems, and is useful in situations where decision makers have little 

knowledge (Hertwig and Herzog, 2009). Similarly, decision makers may develop 

internal narratives (stories) about the problem in an effort to minimize negative, 

or maximize positive, impacts on the outcomes of a decision (Jonassen, 2012). 

Heuristics are not good or bad, but their effectiveness depends on whether people 

select the proper heuristic for the decision problem. Since heuristics can be 

learned, this means that new heuristics (or approaches) to working through 

uncertain problems can be taught (Gigerenzer and Gaissmaier, 2011). Tools that 
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integrate these psychological components of decision making may better support 

how people actually work through uncertain decision problems.    

The strategies used by decision makers to cope with uncertainty can be 

grouped into three basic strategies: reducing, acknowledging and suppressing 

(Lipshitz and Strauss, 1997). Strategies for reducing uncertainty include 

collecting additional information prior to making the decision or waiting for 

additional information before making a decision (Lipshitz and Strauss, 1997). The 

additional information does not necessarily need to be correct, but needs to 

support the perception of consistency in what is known (Brashers, 2001).  When 

reducing uncertainty is not feasible or possible, decision makers employ methods 

to acknowledge uncertainty by accounting for that uncertainty when selecting a 

potential course of action and identifying ways to manage or avoid the potential 

impacts of the uncertainty (Lipshitz and Strauss, 1997;Chalkidou et al., 2007). 

Strategies for suppressing uncertainty include ignoring or altering the uncertain 

information (denial). Additionally, decision makers may suppress uncertainty 

with cursory attempts to reduce or acknowledge uncertainty (rationalization) 

(Lipshitz and Strauss, 1997;Milkman, 2012).  

These strategies may be beneficial for problems where the possibility of 

obtaining additional information or waiting until additional information is 

available or is feasible, or when knowledge about uncertainty is sufficient to 

develop discrete courses of action to manage the risks. However, these strategies 

assume that better knowledge will be achieved with more work, research, time or 

effort allowing deep uncertainties to be converted to manageable statements of 
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risk. The challenge is that more work and more information may not reduce 

uncertainty, and conversely, may even expose previously unknown uncertainties. 

Moreover, some uncertainties may be irreducible, no matter the amount of 

additional information. Therefore, some decisions must proceed in the face of 

these deep uncertainties. As a result, deeply uncertain decision problems require 

methods for evaluating policies in the face of these deep uncertainties.  

 

3.3.1.3 Prescriptive Decision Making Model 

Prescriptive decision models acknowledge that humans can be poor decision 

makers.  These models are concerned with the development of tools to support 

and enhance the decision-making process, focusing on the development of tools 

that fulfill two goals. Tools must be both useful to decision makers, and decision 

makers must actually be able to use them. In effect the goal of prescriptive models 

is to prescribe how decision makers can approximate normative decision 

processes in practice. The result is a synthesis of normative and descriptive 

models (Brown and Vari, 1992).  

 Prescriptive theories have resulted in varied approaches to bridge 

decision-making theory and practice. Some approaches focus on a structured 

sequence of activities. For example, decision trees offer a means to graphically 

depict available decision alternatives, the uncertainty and probabilities associated 

with those alternatives, and evaluations/measures of how well each alternative 

meets the objectives for the decision problem (Kingsford and Salzberg, 2008). 

This approach assumes discrete alternatives with known or knowable 
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probabilities. For decision making under deep uncertainty, these probabilities may 

not be know, and the identification of a discrete set of alternatives that perform 

well over variable future conditions may not be feasible.  

Scenario planning offers a means to better handle evaluation of variable 

future conditions. Scenario planning was developed to explore the long-term 

implications of decision alternatives where specific probabilities for each 

alternative are not known. Scenarios identify plausible futures, describing 

possible ways the future can unfold, both positive and negative, through the use of 

narratives and "what if" scenario creation(Bishop et al., 2007;Volkery and 

Ribeiro, 2009). Scenarios allow decision makers to better understand how policies 

behave over a range of future conditions, as well as clarify their perceptions of the 

problem. This approach allows groups of decision makers with competing social 

or political interests to find common ground for decisions, a key element in policy 

making (Volkery and Ribeiro, 2009). For example, “What if?” is a scenario based 

policy-planning tool for projecting future land use demands and identifying 

locations suitable for those land uses (Klosterman, 1999). "What if?" allows users 

to manually create alternate scenarios and to visualize the impact of those choices 

on projected future land use, employment, and population trends. While the 

system was evaluated and deemed  "easy to use (Klosterman, 1999), users would 

need to manually generate more and more scenarios to see the full range of 

impacts as the number of future states, policy alternatives and input parameters 

increase.  
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With many plausible scenarios for future conditions, static policies that 

perform well in many or even most of these futures are unlikely (Lempert, 

2002;Lempert et al., 2003;Walker et al., 2001). Rather, addressing problems with 

deep uncertainty requires policies that are robust across a range of plausible 

futures, instead of being optimized for a single best estimate of future conditions, 

resulting in a continuous range of outcomes. Rather than an optimal policy that 

performs the “best” for a given future condition, the goal in robust decision-

making is to identify polices that perform well over a number of possible futures, 

so that policies that are less sensitive to unknowns (deep uncertainties) (Couclelis, 

2003;Lempert et al., 2003). Decision makers can then evaluate each robust policy 

in detail (Lempert et al., 2003). 

 In robust decision-making, decision support tools that support the 

assessment of this range of outcomes over uncertain futures would be 

advantageous over those that provide discrete solutions and probability estimates 

of uncertainty. Visualization is well suited for communicating this level of 

continuous data, as visualization can convey complex and dense information in a 

single view, that otherwise would not be easily communicated through individual 

images or the written word (Tufte, 1983;Cleveland, 1984;Hedges, 1987).   

 

3.3.2 Uncertainty Visualization in Cartography and GIS 

Current uncertainty visualization methods incorporate quantitative and qualitative 

estimates of uncertainty into geographic visualizations (Aerts et al., 2003;Bostrom 

et al., 2007;Dong and Hayes, 2012;Li and Zhang, 2006;Pham and Brown, 
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2003;Viard et al., 2011). A common approach to representing uncertainty is the 

adaptation of Bertin’s  (1983) visual variables. These visual variables include 

size, shape, value, orientation, color, and texture. Along with these variables, 

graphic variables, such as transparency, saturation, and clarity have also been 

proposed to represent the varying degrees of uncertainty as information separate 

from the attribute (MacEachren, 1992;Slocum et al., 2004).  

To further distinguish the types of uncertainty visualization methods, 

Gershon  (1998) proposed two general visualization strategies: intrinsic and 

extrinsic. Intrinsic techniques integrate uncertainty in the display by varying an 

object’s appearance to characterize the associated uncertainty (Figure 3.1). For 

example, fuzzy lines to represent vague or unknown boundaries are used in place 

of crisp lines for more known boundaries. The geographic object and the 

uncertainty are represented together as a single entity. Extrinsic techniques rely on 

the addition of geometric objects to highlight uncertain information. For example, 

a choropleth map may illustrate pollution levels in a watershed. The addition of 

hatch marks of varying density would depict the level of uncertainty in the 

pollution levels at a given location. The intrinsic and extrinsic categories of 

uncertainty representation both reflect GIS researchers' conceptualization of 

uncertainty that there is a qualitative or quantitative value associated with data 

and model results (Figure 3.1).  
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Figure 3.1 Intrinsic and extrinsic symbology for visualizing uncertainty 

 

The primary focus of many studies on uncertainty visualization is to 

develop generalizable methods of uncertainty visualization that show the form, 

source, amount or presence of uncertainty in individual attributes or results. These 

studies typically focus on designing the visualization (Buttenfield, 

1993;Fauerbach et al., 1996;Djurcilov et al., 2002;Bostrom et al., 2007), 
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evaluating whether users were able to identify specific uncertainty values 

(Blenkinsop et al., 2000), and assessing the impact of uncertainty visualization 

data identification (Hope and Hunter, 2007;Xiao et al., 2007). Newman and Lee 

(2004) evaluated both extrinsic and intrinsic techniques for the visualization of 

uncertainty in volumetric data by comparing glyph-based techniques, such as 

cylinders and cones, with color-mapping and transparency adjustments. They 

found that while each method was useful for identifying uncertainty in the 

scenario test, the glyph techniques were most beneficial overall out of those 

presented in their work. Leitner and Buttenfield (2000) focused on the how 

inclusion of uncertainty information impacts the decision-making process, by 

changing the representation, through systematically altering Bertin’s visual 

variables, finding that inclusion of uncertainty clarified mapped information and 

reduced the time it took for people to make a selection.  

Some researchers have also asked decision makers to evaluate the 

effectiveness of uncertainty visualization for specific uncertainty values for 

decision support (Leitner and Buttenfield, 2000;Cliburn et al., 2002;Aerts et al., 

2003;Slocum et al., 2003;Goovaerts, 2006). Findings suggest that uncertainty 

visualization methods are effective for communicating specific uncertainty 

values, but that (Aerts et al., 2003;Cliburn et al., 2002;Goovaerts, 2006;Slocum et 

al., 2003). Aerts et al.(2003) compared static representations with dynamic 

toggling to visualize uncertainty in a water balance model. They found that 

planners and decision makers found the inclusion of uncertainty information 

useful, preferring the static representations to toggling between the maps. Leitner 
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and Buttenfield (2000) found that including certainty information in maps resulted 

in similar or faster decision times compared to a basic map with no certainty 

information presented. Because they used the term 'certainty' rather than 

'uncertainty,' they essentially evaluated whether a positive framing effects would 

benefit the user. Although each of these studies shows uncertainty visualization to 

be effective for identification of specific uncertainty values, they do not evaluate 

whether the tools are usable for decision support settings. 

Cliburn et al. (2002) evaluated the impact of experience on the 

effectiveness of uncertainty visualization in a water balance model. Here 

experience was operationalized as users being either decision makers or domain 

experts. That study found that complex uncertainty visualization methods 

overwhelmed the policy experts (decision makers), while scientific experts were 

able to use detailed and complex visualizations more readily in decision-making. 

The decision makers participating in the study indicated that they did not like to 

see the uncertainty. This is an interesting result, since even though the decision 

makers found the less detailed visualizations effective for identifying areas of 

uncertainty; they did not find the explicit identification of specific uncertainty 

values beneficial.  

 

3.4 Explicit and Implicit Uncertainty 

In this section we introduce the concept of explicit and implicit uncertainty as a 

way to approach uncertainty visualization that is prescriptive in nature, bringing 

tools to support evaluation of uncertainty in decisions in a manner useful and 
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usable by decision makers. Explicit uncertainty is linked more to normative 

models, theoretically defining what decision makers should know about data and 

model outcomes. Implicit uncertainty is linked to both descriptive and 

prescriptive models, integrating what decision makers actually do in practice into 

tools to support better decisions.  

Explicit uncertainties are gaps, errors, and unknowns displayed or 

represented through quantitative values (e.g., error bars) or qualitative estimations 

(e.g., more or less uncertain)  (Deitrick, 2012). In explicit visualization, 

uncertainty is conceived of as specific values or measures, related to, but not the 

same as, the underlying data. GIS researchers use explicit uncertainty to evaluate 

uncertainty in data sources, models parameters, and results. Most current methods 

for visualizing uncertainty, as described above, are explicit. 

Explicit approaches to uncertainty visualization for decision support share 

traits with the normative models of decision-making (as shown in Figure 3.2).  

Like normative models that build on how decision makers should make decisions, 

visualization features such as transparency or texture (MacEachren, 1992), focus 

on representing known uncertainties, assuming that better decisions result from 

evaluation these values. There is an inherent assumption that decision makers can 

use statistical estimates to evaluate policy options. For many of these methods, the 

probabilities of future conditions must be known or knowable, and the goal of 

using these methods is to improve decisions by identifying optimal solutions. For 

decision support settings, specific statistical estimates of uncertainty for discrete 
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alternatives do not reflect how decision makers approach decision-making under 

uncertainty in practice. 

 

 

Figure 3.2 Explicit uncertainty as a normative model of decision-making 

 

Implicit uncertainty represents how, in practice, decision makers consider 

a range of alternative decisions due to different data sources, model parameters, 

models, and policy choices (Deitrick, 2012). As such, the definition, interpretation 

and, potentially, representation of uncertainty is informed by the users and the 

domain. Implicit uncertainty is conceived of as being related to policy outcomes, 

so that the overall range of potential outcomes is as important as the geographic 

variability of the outcomes. Few geographic visualization methods represent 

implicit uncertainty. 
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Implicit visualization builds on descriptive decision approaches, 

acknowledging the impact of decision makers experience, emotions and 

knowledge on how they frame decision problems, without assuming that the 

probability of future conditions are known or knowable.  The relationship 

between descriptive models and implicit uncertainty is illustrated in Figure 3.3. 

The goal of implicit visualizations is to develop tools that are both useful to, and 

usable by, decision makers in order to support more informed decisions through 

exploration of the relationship between uncertainty and decision outcome. The 

relationship between uncertainty and decision outcomes becomes key to 

identifying policies that are robust against uncertainty. This focus on providing 

tools that assist decision makers in integrating uncertainty visualization in 

decision-making is prescriptive in nature.  

 

Figure 3.3 Implicit uncertainty as a descriptive model of decision-making 
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Examples of both explicit and implicit approaches are shown in Figure 

3.4. In these examples, the impact of climate change on water sources in Arizona 

represents model uncertainty. In the explicit example, individuals using a model 

must select a single climate change scenario (for example, will there be 50 percent 

more water available or 50 percent less) for evaluating the impact of policy 

choices such as reducing population density. If they want to evaluate different 

climate change conditions, they run the model several times and examine the 

results independently. In the explicit example, model results are depicted for a 

single scenario with the uncertainty for that scenario depicted as a separate value, 

with emphasis placed on the geographic variability of the uncertainty. While this 

effectively depicts the data and model variability, it does not support decision 

maker evaluation of the impact of the uncertainty on policy outcomes.  

If decision makers wanted to view the outcome of multiple policy choices, 

they would evaluate and compare just as many different scenario visualizations. 

In the implicit example, the visualization focuses on the relationship between the 

uncertain variables and the outcomes of policy choices. Here, users make a policy 

choice, and the resulting groundwater impact for the range of possible climate 

conditions available is visualized. In this case, the geographic variability of the 

uncertainty is propagated through the model results, with the overall impact of the 

different climate conditions shown in relation to the policy choices.  
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Figure 3.4 Explicit and implicit uncertainty  
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Both explicit (such as uncertainty in water flow predictions) and implicit 

uncertainty (the impact of the water flow uncertainty on policy decisions) are 

beneficial for decision support tools meant to aid in the identification of policies 

that support the long-term goals of decision makers. Uncertainty can be viewed as 

a continuum with explicit uncertainty and one end and implicit at the other. 

Similarly, decision-making can be seen as a process, starting with analysts and 

domain experts and eventually moving towards decision makers.  

The form of uncertainty appropriate is determined by where you are in the 

process. During definition of the decision problem, identification of models and 

input data, individuals with domain or analysis expertise may prefer explicit 

uncertainty, where direct statistical evaluations are beneficial for their analysis. 

Initial evaluation of a problem often includes the identification of source 

uncertainty, as well as the form of uncertainty introduced through models, which 

often requires explicit evaluations of uncertainty, including statistical estimates 

(Liu et al., 2008). Identifying policies robust to specific sources of uncertainty 

would benefit from both explicit and implicit uncertainty representations. 

Interestingly attempts to identify and quantify the propagation of uncertainty in 

GIS outputs would be served by both explicit and implicit representations of 

uncertainty, as implicit representations serve as a summary of how uncertainty is 

expressed overall in model results, similar to error propagation.  
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3.5 Examples of Implicit Uncertainty Visualization 

Methods for explicit representation of uncertainty currently exist, having been 

shown to be effective for identification of specific uncertainty values. The next 

step in uncertainty visualization for decision support is to adapt existing methods, 

or develop additional methods, to implicitly representation uncertainty. This 

section suggests ways to adapt existing methods for implicit uncertainty 

visualization.   

 
3.5.1 Outcomes Spaces 

Outcome spaces display the relationship between uncertainty variables and policy 

decision outcomes in a two dimensional graph (Figure 3.5). In an outcome space, 

each axis represents one uncertain variable, whose value varies over possible 

future conditions. The two axes are selected based on the uncertain variables 

important to the decision problem. The space is symbolized by organizing the 

range of outcomes into categories such as most to least robust or most to least 

desirable. Robustness or desirability is determined from user input or 

requirements of the decision problem (i.e. maximum levels of ground water use).  
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Figure 3.5 Conceptual representation of an outcome space 

 

The focus on decision outcomes aligns with policy makers need to 

evaluate policies over varying scenarios of future conditions, with uncertainty 

operationalized as the variability over future conditions. Unlike explicit methods 

in which the number of scenarios needs to be reduced to a small number, this type 

of visualization makes representing the range of future conditions possible. The 

uncertainty is represented implicitly through a range of possible outcomes in more 

than one variable. Implicit visualizations using outcome spaces allow evaluation 

of a policy decision over all possible futures in a single visualization space. 
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3.5.2 Parallel Coordinate Plots 

Parallel coordinate plots are line graphics that show the relationship between 

variables in multidimensional datasets. Figure 3.6 illustrates a parallel coordinate 

plot for a single attribute over a region, showing the impact of uncertainty over 

geographic space. Each item on the x-axis represents a geographic “unit” that can 

be defined for the decision problem (e.g., a census tract, parcel of land, wet land 

area). The y-axis represents the range of uncertainty for an attribute, with smaller 

values being at the bottom and larger values being at the top. The outcomes for all 

possible future conditions can be symbolized based on the most/least 

robust/desirable based on the specifications of the decision makers or decision 

problem.  

 

 

Figure 3.6 Parallel coordinate plot with specified geographies 
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As an implicit uncertainty visualization method, this offers a viable 

method for visualizing either multiple forms of uncertainty or geographic 

variability of uncertainty for a single attribute that varies over future conditions. 

Moreover, this approach offers a means to visually illustrate the spatial variability 

of error propagation in a model.  For example, if evaluating the impact of zoning 

policies on trip generation for traffic, each position along the x-axis could 

represent a traffic analysis zone (TAZ). Uncertainty in the type of trips generated 

(vehicles, pedestrians, cycling, bus, etc.) could be represented based on different 

zoning policies. The outcomes of a policy would then be “mapped” onto the y-

axis for each parcel, based on the amount of trips generated for a given trip 

generation assumption. That could be done for multiple policy conditions, and 

multiple combinations of land use, to identify the best option for the possible 

future conditions.  

Parallel coordinate plots can also depict policy outcomes for multiple 

future conditions for each geographic unit under study. A benefit of this approach 

is that including the geography in an abstract way potentially removes the 

affective impact of seeing negative outcomes in the decision makers region. Here, 

multiple forms of uncertainty are reflected in the output, similar to uncertainty 

propagation in GIS analysis, while being integrated with the attribute information.  

This allows decision makers to focus on the outcomes of policies (however that is 

measured, for example, water usage) instead of requiring them to integrate 

outcomes and statistical estimates of uncertainty. The focus on outcomes also 
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supports a storytelling (Jonassen, 2012) approach to problem solving, as decision 

makers work through how their polices will impact the community.  

Similar to the outcome space, this allows evaluation of which policy 

options result in desirable outcomes over the largest geography. With this method 

of spatial evaluation, where the spatial units are known, but not visualized on a 

geographic map, some of the affect that may occur when decision makers are 

aware of negative impacts on their “land” may be avoided.  

 
3.5.3 Goal Plots 

Similar to a bar chart, a goal plot is a visual method for identifying geographic 

areas that meet specific outcome goals of policy makers (Figure 3.7). The x-axis 

represents the range of policy choices and the y-axis represent the variability in 

geographic placement to meet that policy. In some decision support settings, 

policy makers may need to identify geographic areas (or groups of areas) that 

meet a certain goal (so the policy outcomes fit a predefined criteria).  

For example, decision makers may want to know how many parcels could 

be developed and in what locations to minimize pollution load into a watershed. 

In these goal-oriented settings (Shimizu et al., in progress), the importance is on 

identifying the geographic areas (such as parcels of land for development) that 

meet the policy goals of the decision makers (pollution load). Goal plots offer a 

method for representing the uncertainty of future conditions, while allowing 

decision makers to identify the locations or combination of locations that meet 

their goals (Shimizu et al., in progress). The result is that goal plots build on 
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narratives and storytelling (what are the future conditions that decision makers see 

as desirable), while incorporating approaches that have worked in the past (goal 

oriented versus outcome oriented) as well as the goal oriented decision frame of 

the decision makers. Here uncertainty can be operationalized in many ways, 

including the impact of climate change, the differing types of land use being 

considered, and density of development. 

 

Figure 3.7 Conceptual goal plot relating number of parcels that meet a given 

criteria based on the uncertain variable of interest 

 
3.5.4 Youden Plots 

A Youden plot is a specialized scatterplot that displays measurement uncertainty 
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example, both inter-laboratory (the same location does two runs of a test on the 

same sample) and between-laboratory (so two different labs do one run of a test 

on a sample) variability can be evaluated. Axes in the plot are drawn on the same 

scale, and a point in the plot corresponds to either the results of one laboratory for 

two different test runs or the results of two different labs for their test run. The 

resulting graphs represent the variability of results, and serve as a form of implicit 

visualization of uncertainty.  

 The Youden plots can be adapted to represent implicit visualization for 

decision support with uncertain variable shown on the x-axes and the model 

results for the policy option shown on the y-axes (Figure 3.8). The outcomes for a 

policy option for all of the uncertain values can be symbolized as points in the 

chart. These points can then be symbolized for different policies (so multiple 

policies on the same plot) or for geographic groupings (how many parcels receive 

the outcome value, similar to the goal plot). Using the Youden plot in this way, 

you can identify policies that work well over the largest range of possible futures 

and/or the most locations. Similar to the prior methods discussed, multiple policy 

outcomes can be visualized in a single graph, and uncertainty is operationalized as 

the variability of the selected attributes (on the axes) over future conditions.  

An additional method for incorporating geography and implicit 

uncertainty would be to add a third dimension to the Youden Plot. In this form, 

locations could be shown on the x-axis, the y-axis is the uncertain variable and the 

z-axis is the model outcome. The symbols can be sized proportionally based on 

the number of future condition model runs that result in a given outcome. For 
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example, if a city was evaluating policies that would encourage reduction in water 

usage, they might identify a goal of at least a five percent reduction. If the 

uncertainty is operationalized as the percentage of people who decide to try to 

reduce their water usage, the model could be run for multiple scenarios for 

different percentages of public response. The results could be shown for each city, 

with the City on the x-axis, the amount of ground water on the y-axis and the 

percentage of the public participating in reductions on the z-axis. The symbols 

could be sized proportionally for the number of scenarios that result in a given 

reduction.  

 
3.5.5 Linking and Brushing 

Linking and brushing refers to the dynamic connection between two or more 

computer-based visualizations (such as a map, parallel coordinate plot or 

histogram). When an area in one of the visualizations is selected (via brushing) 

the same area is highlighted in the other visualization. For example, you select 

five square miles of census tracts in a map and the portion of the parallel 

coordinate plot that relates to those areas are highlighted. Linking and brushing 

offers a means to integrate implicit uncertainty methods, such as parallel 

coordinate plots, with a geographic map. The ability to connect multiple 

visualizations also supports robust approaches by allowing a synthesized view, 

and exploration, of both explicit and implicit uncertainty. 
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Figure 3.8 Adapted Youden plot relating uncertain variable of interest to outcome 

values by location 
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As described earlier, parallel coordinate plots can represent all parcels as 

axes in the plot. The scale for each axis would represent the policy outcome based 

on the uncertain variable. There would be multiple plots for each policy under 

evaluation. While geography is represented in the parallel coordinate plot, 

topological relationships are not visualized and individual plots have to be 

compared. Linking the parallel coordinate plot with a map allows additional 

visualization of uncertain outcomes. Here, if a given outcome range is considered 

desirable (such as specified range of reduction in water use) that area on one 

parallel coordinate plot can be selected for all of the areas under study. If the plots 

are linked, the same outcome range can be selected on the other parallel 

coordinate plots. Then the map serves as a means to summarize the number of 

policies that result in that desired outcome for each geographic unit (such as cities 

or census tracts). This identifies the variability of outcomes based on the 

uncertainty variable (range of outcomes per policy) and the geographic region 

(how many policies result in favorable outcomes for each geographic unit), 

allowing decision makers to evaluate which outcome is obtainable under the most 

future conditions or most policies. 

 
3.6 Conclusions 

Decision makers contend with uncertainty in their decisions, but instead of 

breaking uncertainty out as discrete, separate attribute information like GIS and 

geovisualization researchers might do, decision makers focus on how uncertainty 

impacts the outcomes of policy decisions for future conditions (Howard, 
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2008;Jonassen, 2012). Conceptualizing decision-making under uncertainty as a 

continuum offers a flexible interpretation of uncertainty, which evolves from 

explicit during initial analysis and discovery to implicit for evaluation and making 

the decision (Figure 3.9). For example, when analysts are evaluating input data 

uncertainty and model results, they may explicitly visualize or represent 

(statistically) input data uncertainty and then implicitly visualize the propagation 

of that uncertainty through the model using parallel coordinate plots. The 

continuum of explicit to implicit uncertainty is similar to normative, descriptive 

and prescriptive approaches to decision making.  

 For informed and effective decisions to be made, decision support and 

model results should depict uncertainty in a manner usable to decision makers so 

that the usefulness of the information increases (Liu et al., 2008). This builds on 

the concept of usable science where the objective is for researchers to relate the 

goals of their research to specific “on the ground” problems, strive to understand 

the needs of the policy decision makers, bring the needs of the user into the 

science process, and evaluate the results of research with the intended use (Pielke 

et al., 2010;White et al., 2010). Implicit uncertainty visualization is a step towards 

usable uncertainty visualization for decision support.  

Methods that integrate uncertainty into the evaluation of policy decisions 

and their outcomes, builds on existing approaches to decision making under 

uncertainty  (Brown and Vari, 1992;Volkery and Ribeiro, 2009). The challenge 

for researchers is the need to identify how decision makers interact with 

uncertainty, and apply that knowledge to develop methods for uncertainty 
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visualization for decision support in that policy area. In decision science research, 

the focus has often been on identifying decision frames outside of the individuals 

involved (so the external framing of a decision problem). However, to proceed to 

develop usable methods, GIS researchers need to uncover common internal 

frames and goals as well. Beyond understanding the decision domain, interacting 

with decision makers offers researchers a chance to clarify the manner in which 

uncertainty is conceptualized in the decision-making process.  

Decision makers are similarly challenged, as they need to be willing to not 

only communicate what they need to support their decision making, but also share 

with GIS and geovisualization researchers information about how they 

operationalize decision-making. Additionally, decision makers must be willing to 

work with new methods of decision support, including possibly combining new 

methods with existing approaches. While this complicates the vision of 

developing standard uncertainty visualization tools for use in GIS, targeted 

development of techniques to support the use of uncertainty in policy decisions 

has the potential to bring uncertainty visualization from research into practice. 
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Figure 3.9 Uncertainty visualization and decision-making 
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Chapter 4 

EVALUATING IMPLICIT VISUALIZATION OF GEOGRAPHIC 

UNCERTAINTY FOR PUBLIC POLICY DECISION SUPPORT 

This chapter was submitted to Computers, Environment, and Urban Systems in 

November 2012. This work was co-authored with Elizabeth A. Wentz. As first 

author, I was responsible for writing and formatting the manuscript for journal 

submission. I will respond to referee and editorial comments during the peer-

review process. Changes made from the submitted work include minor editorial 

changes based on comments from the committee. This work is not substantially 

changed from the submission.  

 

4.1 Abstract 

Decision makers increasingly rely on science to inform public policy decision-

making. Although the integration of science and policy offers the potential to 

support more informed decisions, scientific results are often not provided in a 

manner usable to decision makers. When faced with highly uncertain conditions, 

such as climate change, communicating science in a manner accessible to decision 

makers becomes even more important. In decision support settings, visualization 

of geographic information offers a powerful means to communicate uncertain 

science to decision makers. However, building convincing representations does 

not provide a complete understanding of the potential consequences of decisions. 
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Developing uncertainty representations that integrate the processes of 

decision-making under uncertainty offers a means to provide insight into the 

relationships between decisions, uncertainty, and outcomes (consequences of 

policy decisions). Nevertheless, visualizations often avoid the inclusion of 

explanations of risk and uncertainty. This research uses the distinction between 

explicit and implicit uncertainty for visualization in decision support. In explicit 

visualization, uncertainty is conceived of, and evaluated as, unique information, 

related to, but not the same as, the underlying data. Implicit visualizations embed 

uncertainty information into the representation, instead of expressing uncertainty 

as separate or additional information. When reframing uncertainty in this way, the 

relationship between uncertainty, outcomes, and decisions is emphasized over 

explicit representation frameworks that dissociate the method from the user.  

This paper evaluates an implicit method for visualizing the impact of 

climate change uncertainty on policy outcomes in a water model for a 

hypothetical metropolitan area. The effectiveness of this method for visualizing 

the relationship between uncertainty and policy impacts was evaluated through a 

human subject study. The paper reports on the results of the study and how this 

method compares to methods for explicitly visualizing uncertainty.  

 

Keywords: uncertainty visualization, outcome space, decision support, decision 

frames 
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4.2. Introduction  

Mediated visual communication has played a central role in the climate change 

dialogue between science and policy—shaping perception and opinion, and as a 

result, influencing public policy (Corbett and Durfee, 2004;Smith, 2005;Boykoff 

and Boykoff, 2007). When used to support decision-making, these visualizations 

often do not include explicit explanations of risk and uncertainty (Carvalha and 

Burgess, 2005). Instead the focus is often on simple forecasts and visualizations 

that show discrete alternatives to ease understanding (Abbasi, 2005). Building 

convincing visualizations, however, does not provide a means to understand the 

relationship between decisions, uncertainty, and the decision outcomes.  

Uncertainty broadly refers to what is not known about the relationship 

between a measured (or predicted) value and the actual value. Existing typologies 

of uncertainty include a wide range of data characteristics, such as quality, error, 

precision, completeness, and lineage. GIS uncertainty research often centers on 

these data characteristics, identifying, evaluating, or tracking spatial component of 

uncertainty in data. Research themes include visualizing the geographic 

distribution of uncertainty  (Cliburn et al., 2002;Aerts et al., 2003a;Slocum et al., 

2003), quantifying uncertainty and propagation (Goodchild, 1994;Heuvelink, 

2005;Goovaerts, 2006) as well as applied research into geographic uncertainty in 

areas such as climate change, ecology, and planning  (Devillers and Jeansoulin, 

2006a;Isendahl et al., 2009;Gober et al., 2010). Although the topics and fields of 

application are diverse, the approach is often similar, focusing on presenting 

uncertainty in explicit and quantifiable ways, with the intention of developing 
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generalizable methods applicable to many different domains. This somewhat 

uniform approach to uncertainty visualization contrasts with the contextual nature 

of uncertainty in decision support settings, where diverse stakeholders often 

possess differing experiences, expectations and goals as they relate to their 

domain, but share common characteristics in addressing uncertainty in their 

decisions. 

The relevant form of uncertainty for a given decision problem is often 

determined by the user, context, and purpose of the data. For example, science 

experts may prefer statistical estimations, while decision makers might prefer 

generalized information such as a scale of low to high uncertainty (Cliburn et al., 

2002). This poses a significant challenge for uncertainty visualization methods 

intended to facilitate informed decision making, as decision makers may not 

easily understand or use complex scientific representations. In decision support 

settings, the specific form of uncertainty might be less important than a general 

awareness of its presence and its impact on decision outcomes.  

Interestingly, a disjoint exists between decision makers’ view of 

uncertainty and uncertainty visualization. Research suggests that many users 

consider uncertainty visualization either irrelevant or detrimental for successful 

communication and evaluation of alternatives (Cliburn et al., 2002;Slocum et al., 

2003;Brugnach et al., 2007). In contrast, decision makers often view uncertainty 

itself as unavoidable, and potentially, as integral to their understanding a problem 

(Brugnach et al., 2008). This is a shift from the perception of uncertainty as 

something to eliminate or minimize in decisions to something that might help 
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guide choices. Visualization methods should build upon this attitudinal shift by 

incorporating existing ways of working with uncertainty in decision making with 

methods for visual uncertainty communication.  

Developing uncertainty visualization methods useful to decision makers 

requires a shift from complex scientific visualizations to methods that consider 

the decision frame of the user. Decision frames encompass how individual 

experiences and beliefs establish the boundaries and constraints of a decision 

problem and course of action (Tversky and Kahneman, 1981). The perceptual 

change from avoidance to acceptance, and even use, of uncertainty by decision 

makers, changes decision makers’ framing of a problem. Providing decision 

makers with methods that allow them to gain insight into the relationship between 

uncertainty and outcomes reframes uncertainty so that the relationship between 

the method and needs of the user are emphasized. 

This research distinguishes between explicit and implicit uncertainty and 

visualizations as discussed in Chapter 3. Explicit uncertainty directly identifies 

gaps, errors, and unknowns, which are displayed or represented using quantitative 

estimates (such as error bars) or qualitative characterizations (certain versus 

uncertain). Explicit visualization refers to methods that extract, model and 

quantify uncertainty separately from the underlying attribute. In explicit methods, 

uncertainty is conceptualized as specific values, to evaluate as unique attributes, 

related to, but not the same as, the underlying data. Implicit uncertainty, by 

contrast, conceptualizes uncertainty as an inherent characteristic of the data. In 

decision support settings, implicit methods link uncertainty to decision outcomes. 
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Implicit uncertainty is more context dependent, where the decision problem 

informs definition, interpretation and, potentially, representation. Implicit 

visualization integrates uncertainty and decision outcomes into a single 

visualization, as one attribute. With these definitions, it is possible to explicitly 

define uncertainty (such as providing probability for a model projection), and then 

use implicit methods for visualizing that uncertainty (visualizing the range of 

probability values for several different models). Implicit uncertainty visualization 

supports decision making under uncertainty by allowing users to explore the 

relationship between decisions, outcomes, and uncertainty.  

At its most general, this study aims to identify whether decision makers 

interpret implicit uncertainty visualization as representing uncertainty. 

Additionally, this study seeks to identify whether decisions made with implicit, 

explicit and no uncertainty differ. Lastly, this research explores whether implicit 

visualizations are seen as effective for decision-making, and if users interpret 

these representations as uncertain. Specifically this work seeks to address the 

following: 

• Does implicit visualization of uncertainty result in policy decisions that 

differ from explicit/no uncertainty visualization? 

• Are implicit representations of uncertainty perceived as effective for 

evaluating the robustness of a policy decision?  

• Do users interpret implicit visualization as being uncertain? 
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The remainder of this paper begins with a brief review of relevant literature, and 

then presents the results of a human subject study where survey participants were 

asked to make policy decisions using both implicit and explicit uncertainty 

representations.  

 

4.3. Visualizing Uncertainty 

Researchers have sought the most appropriate and effective means of representing 

uncertainty to users, carrying out experiments comparing representational 

techniques. Many methods adapt Bertin’s (1983) visual variables to visualize 

uncertainty, with researchers developing additional graphic variables specifically 

to visualize uncertainty, including saturation, crispness, clarity, resolution, and 

transparency (MacEachren, 1992;Slocum et al., 2004).  

Explicit visualization strategies fall into two general categories: intrinsic 

and extrinsic (Gershon, 1998). Both rely on an explicit definition of uncertainty. 

Intrinsic techniques integrate uncertainty in the display by varying an existing 

object’s appearance to show associated uncertainty. Although the uncertainty and 

“object” are represented in unified representation, such as using fuzzy lines to 

represent vague boundaries, uncertainty is still explicitly depicted as separate 

from the underlying data. Extrinsic techniques rely on the addition of geometric 

objects to highlight uncertain information. Here, the explicit nature of the 

uncertainty is more apparent, since the representation uses separate objects to 

depict uncertainty. These categories are suitable for both qualitative and 

quantitative descriptions of uncertainty. For example, model results might be 
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qualitatively identified as a range of certain to uncertain using hatch marks of 

varying density (extrinsic), while surface heights offer a method for representing 

error quantitatively (intrinsic).  

Researchers have explored differences in interpretations and use between 

novice and expert users. Cliburn et al. (2002) developed an environment to allow 

decision makers to visualize the results of a water-balance model. The study 

found that the complexity and density of the representation methods seemed to 

overwhelm decision makers, while experts were able to use the detail more 

readily. They suggest that intrinsic methods provide a more general representation 

of uncertainty that non-expert users may prefer over more-detailed extrinsic 

representations. 

 

4.4. Methods 

I conducted a human-subject study consisting of decision tasks related to water 

policy in a hypothetical western city. In the study, participants were presented 

with a survey where they were part of a general council reviewing policy 

recommendations for reducing the impact of growth on groundwater. Participants 

were provided with maps showing predicted groundwater usage that would result 

from three sets of policies. They were asked to rank the policies from most to 

least robust, with the most robust choice being the policy that impacted 

groundwater the least over the widest range of future conditions. They did this for 

three decision sets. Each set had a different visualization strategy using either 

implicit uncertainty, no uncertainty or explicit uncertainty. Participants were also 
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asked to indicate whether they used the visualizations when making their 

rankings, whether they were effective for the task, and if they saw the information 

as including the uncertainty of climate change.  

To test whether implicit visualizations resulted in rankings that differed 

from explicit or no uncertainty, all participants worked through the same three 

decision sets. There was no “correct” ranking, as the purpose of the ranking was 

to compare rankings and answers across the decision sets. With participants 

working through policy rankings using each of the visualization strategies, within 

participant responses could be compared for all answers. Other than the 

visualizations, efforts were made to keep the questions otherwise similar. The 

wording of questions for each decision set was kept the same, but the order that 

the policy options were presented was different for each decision set  (see Section 

4.4.2) to avoid bias in selection of policy. Additionally, the order that participants 

saw the decision sets was randomized to avoid learning.  

This section describes the survey collection instrument as it was presented 

along with the analysis methods for the resulting collected data. 

 

4.4.1 Scenario Overview 

Water management systems are traditionally operated under the assumption of 

stationarity—the idea that natural systems fluctuate within an envelope of 

variability that does not change (Milly et al., 2008). Under the assumption of 

stationarity, water planners acknowledge the possibility of errors in estimation of 
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water inputs, but assume it is reducible through additional observations, 

improvements in data collections, or increased data.  

Climate change, however, poses a challenge to the stationarity 

assumption; as changes to the Earth’s climate are altering the rate of river 

discharge, mean precipitation, sea levels, and other aspects of the water cycle and 

water supply. Uncertainty visualization offers an opportunity for decision makers 

to perceive how climactic uncertainty (evidenced by changes to the stationarity 

assumption or changes to river flow) affects outcomes of policy decisions, 

through communication of the relationship between uncertainty and predicted 

policy outcomes. 

For this study, uncertainty is expressed as the effect of climate change on 

the assumption of stationarity, in this case, changes to the historical flows of two 

hypothetical rivers. The implicit outcome space (Section 4.4.2) represents all 

potential outcomes for a given set of policy conditions for all future flows of the 

rivers. For this study, the outcome space consists of the net cumulative change in 

groundwater resulting from running a single set of policy choices for all predicted 

future river flows in the hypothetical model. 

Study participants were presented with a scenario depicting current 

drought conditions in Wake County, a hypothetical city in the West. Survey 

participants were told that they were members of a water planning board tasked 

with evaluating three sets of policy options for managing future growth and water 

use. The goal of this planning board was to select the policy choice that provided 

the most robust options for future conditions. Participants ranked the following 



126 

policy choices for each decision set (corresponding to implicit, explicit and no 

uncertainty groups): 

• No change in population growth, agriculture or personal water usage 

• General plan allows for increased residential and commercial 

development, with population growth increasing to twice the rate 

predicted by the prior county plan. A public education plan about reducing 

water use will be implemented. 

• A policy to protect ground water is implemented in five years, requiring 

that ground water levels no longer be depleted; meaning use must be 

balanced with recharge. This policy will be strictly enforced through water 

restrictions for existing and new residents as well as businesses. 

Additionally, there will be increased use of effluent water for agricultural 

and commercial uses. 

The three policy choices did not change across the decision sets, but the order 

they were presented in varied. For example, in the implicit decision set the first 

policy shown was the No Change option, but for the no uncertainty decision set it 

was the growth plus education policy option.  

 

4.4.2 Visualizations 

The survey included three decision sets that asked participants to rank 

policy choices. Each set included a different form of visualization for the results. 

In these visualizations, uncertainty is presented using two different spatial 

conceptualizations. Explicit uncertainty is shown on a geographic map, while 
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implicit uncertainty is shown using an outcome space (similar to a Cartesian 

coordinate graph). Both visualizations use similar colors and data representations 

(gain to loss in groundwater). The aim of this work is not to compare the actual 

symbology (the use of color) or the spatial representation (maps versus outcome 

spaces) to show one form of data, but to explore whether individuals understand 

that the visualizations are communicating uncertainty (spatial or otherwise). 

Moreover, this work seeks to evaluate whether implicit uncertainty is understood 

as uncertainty, as well as whether implicit visualizations communicate uncertainty 

in a manner usable for decision support. Since respondents are not evaluating the 

spatial variability of uncertainty, but seeking to identify policies that best meet the 

goals of the decision task, the conceptualization of space is not evaluated here.  

Each of the decision set visualizations are discussed in the following section.  

 

4.4.2.1 Implicit Uncertainty Decision Set  

This research builds upon the methods presented in Chapter 2 (Figure 4.1), which 

offer a means to represent the outcomes and associated uncertainty as a 

continuous space. In this representation, the vertical and horizontal axes represent 

two uncertainty variables identified as vital to the problem under consideration. 

Each point of intersection between values on the axes represents the outcome of a 

given scenario. The area represents all possible outcomes (defined as the outcome 

space) and can further be delineated into regions of no, mild, or overwhelming 

regret.  
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Figure 4.1 Elements of Outcome Space 
 

For the implicit uncertainty decision set, the vertical and horizontal axes 

represent future flows of the hypothetical rivers as a percentage of historical flow. 

This represents two of the uncertain variables scenario, incorporating the 

uncertain impact of climate change on river flow (the challenge to the stationarity 

assumption). The outcome space represents the net cumulative change in 

groundwater. Additionally, areas within the outcome space are identified using a 

range of sustainable to not sustainable based on the amount of change in ground 

water usage.  

60    65    70    75      80    85    90    95    100   105   110    115   120

Drake River (% historical flow)

M
or

ge
s 

Ri
ve

r (
%

 h
is

to
ric

al
 fl

ow
)

Net gain/No reduction in ground water

Moderate reduction in ground water

Net loss in ground water

20

30

40

50

60

70

80

90

100

110

120

The vertical and horizontal axes represent all of the possible future flows of the two 
rivers as percentage of historical flow. Percent historical flow on each river represents 
the range of flows projected by the climate models.  Future-Flow is run for each set of 
policy options for each projected future flow.  

The Wake County water management plan 
requires future water policy to mitigate the 
use of groundwater. Based on these require-
ments, model results are classified as having 
a net gain (so groundwater recharge is more 
than its use), no change or moderate reduc-
tions (groundwater use is more than its 
recharge, but is considered sustainable) and 
net loss (where use is more than recharge).

The scale for the 
Morges River 
startes with 20 

percent of historical 
flow on the top, and 

increases as you 
move down the 

scale

The outcome space represents the net cumula-
tive change in groundwater. These values are 
determined from the Future-Flow model, based 
on policy decisions input into the model. As 
policy decisions are implemented in Future-
Flow, the values in the outcome space will 
change based on the model results
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While this does not depict geographic space, it does reflect the continuous 

spatial distribution of uncertainty across the possible futures of each river system. 

It allows decision makers to identify strategies/policies that perform the “best” 

across the widest range of future possible climate conditions (most robust policy). 

Once these policies are selected, decision makers can further evaluate the 

geographic impact of the policy choices.  

 

4.4.2.2 Explicit Uncertainty Decision Set 

This decision set depicts model results for each policy choice assuming continued 

drought conditions for the next ten years along with the uncertainty of the model 

results. Here, uncertainty was explicitly represented using transparency, a visual 

variable shown effective for visualizing explicit uncertainty (MacEachren et al. 

1998). This decision set used a geographic map as the base. While this differs 

from the implicit visualization, both depict an outcome space of model results 

with uncertainty. The visualizations for this decision set are shown in Figure 4.3.  

 

4.4.2.3 No Uncertainty Decision Set 

The third decision set depicts the geographic distribution of ground water 

drawdown assuming continued drought conditions for the next ten years. This was 

used as a control for comparison to both the implicit and explicit uncertainty 

visualizations. The no uncertainty decision set is shown in Figure 4.4.  
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Figure 4.2 Implicit uncertainty visualization decision set  
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4.4.3 Decision Set Questions 

For each decision set, participants were asked to use the visualizations to rank 

policy options from most to least robust. They were then asked to answer three 

questions:  

• The representations incorporate the uncertain impact of climate change on 

future water supply. 

• The representations are effective for evaluating the impact of policy 

decisions on ground water 

• I used the represented outcomes to evaluate the impact of climate change 

on groundwater 

These questions were used to evaluate whether participants were selecting the 

same policy option rankings across the decision sets, as well as to identify the 

manner in which they were using and interpreting the visualizations.  

Additional demographic information was collected for identification that the 

sample was coming from a similar population. Questions included age and 

education, profession and research/work domain, as well as whether they agreed 

or disagreed with the following questions: 

• Climate change is occurring (answered with a Likert Scale from 1 being 

strongly disagree to 5 being strongly agree) 

• Computer models are effective tools for exploring the impact of climate 

change on water use and policy decisions. 
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Figure 4.3 Explicit uncertainty visualization decision set  
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Figure 4.4 No uncertainty decision set   
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4.4.4 Survey Sample 

Participants were drawn from GIScience faculty and researchers, GIS 

professionals working in decision support settings, employees working in the 

public sector with transportation, land use or water planning, project managers in 

private planning organizations, and PhD candidates working with GIS or decision 

support. Professionals in decision-making, public policy, research with public 

policy decision makers, or GIS professionals represent a challenging access 

group. Respondent driven sampling, offers a means to contact the population of 

study through other survey participants (Bernard 2012). For hard to sample 

populations, respondent driven sampling has been shown to produces samples that 

are more representative of the population under study than nonrandom samples 

(Hathaway et al., 2010). For the first round of distributions, individuals with 

experience in GIS and decision support or public planners were contacted and 

asked to participate. When they were finished, they were asked to provide a 

contact or suggestion for additional participants. After the initial two rounds, the 

requests continued, and the surveys were distributed. In the end, surveys were 

distributed to working groups in GIS and Decision Support as well as local public 

works agencies, planning companies and organizations researching robust 

decision-making and scenario planning. The survey was then distributed and 

shared through the individuals that received it from the initial email distribution. 

This offered a means to recruit participants with decision-making or GIS 

experience, both in professional and research settings. Demographic information 

about respondents is provided is Section 4.5.1. 
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4.4.5 Analysis  

Responses for the three question types in each decision set were compared for 

each participant. The methods for evaluating the responses are discussed in the 

following sections.  

 

4.4.5.1 Policy Ranking Comparison  

For analysis of the policy ranking questions, a t-test was used to identify whether 

the responses between decision sets were significantly different. The rankings 

were first ordered so that all policy options were in the same order (so for 

example, the policy for no change was the first ranking listed for each decision 

set). Then the rankings were combined for each decision set into one number, so 

for example, an 321 would represent that the no change policy received a ranking 

of three. The difference between the rankings for each decision set was calculated 

for each participant. A difference of zero indicates that the participant chose the 

same policy ranking between decision sets, while a difference other than zero 

indicated a different in ranking. The null hypothesis for this test was that there 

would be no difference between the rankings for the decision sets, which would 

mean that participants were possibly choosing policy options based on personal 

preference and not the presented information. I evaluated this hypothesis by 

calculating a 95 percent confidence interval around the mean difference for all 

participants: if the rankings from the decision sets were similar, this confidence 

interval should include zero.  
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4.4.5.2 Do visualizations incorporate uncertain impacts of climate change? 

For each decision set, participants were asked whether the visualizations included 

uncertainty about climate change. Participants responded using the scale strongly 

disagree, disagree, neither disagree nor agree, agree and strongly agree. These 

responses were then coded with strongly disagree as negative two, agree as 

negative one, neither agree nor disagree as zero, agree as one and strongly agree 

as two. This allowed evaluation of the average response for each decision set to 

identify whether responses were significantly different from zero (neutral) and 

whether they were positive (indicating agreement) or negative (indicating 

disagreement) using the reported confidence interval. For each decision set, a t-

test was performed to identify whether the average response was greater than zero 

(indicating that the visualization included climate uncertainty). In this case the 

null hypothesis was that mean results were less than or equal to zero. 

 

4.4.5.3 Is the visualization effective for evaluating the impact of policy changes on 

groundwater? 

Participants were asked whether the visualizations were effective for evaluating 

the impact of policy decisions on ground water drawdown. Participants responded 

using the same disagree-agree scale used for the uncertainty question previously 

discussed in Section 4.4.5.2. These responses were then coded using the same 

negative to positive values as the uncertainty question. This allowed evaluation of 

the average response for each decision set using the t-test to identify whether 

responses were significantly different from zero (neutral) and whether they were 
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positive (indicating agreement) or negative (indicating disagreement) using the 

reported confidence interval. For each decision set t-test was performed to 

identify whether the average response was greater than zero (indicating that that it 

was effective). In this case the null hypothesis was that mean results were less 

than or equal to zero. 

 

4.4.5.4 Comparison of change in rankings and indication of whether they used the 

visualization in decisions 

Lastly, participants were asked whether they used the represented outcomes to 

evaluate the impact of climate change on groundwater. The purpose was to 

evaluate whether their answer to this question was reflected in the rankings, 

assuming that ranking would be different based on whether or not they indicated 

that they used the visual depiction in their policy decisions. Participants 

responded either true or false to this question.  

True/false responses were then compared with ranking difference 

responses (Section 4.4.5.1) with the assumption being that if participants used the 

visualizations, then the ranking difference should be different from zero, and if 

they did not, then the ranking difference should equal zero. Each set of rankings 

was divided into two groups based on the true false responses. For each group a t-

test was performed to identify whether the average response was greater than zero 

(indicating that a change in ranking between decision sets). In this case the null 

hypothesis was that mean results were equal to zero (indicating no change).   
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Decision sets were presented to participants in a random order to avoid 

bias and learning impacts. This means that it is not possible to know the order in 

which participants saw the decision sets. If the order of the decision sets was 

know, the change in ranking from one decision set to the next could be evaluated 

based on the responses to the use question for the second of the sets. For example, 

if a participant went through the implicit first, then explicit, their response to the 

use question for the explicit decision set should correspond to whether their 

answer changed from the implicit to the explicit rankings. Since the order is not 

known, the difference in rankings is evaluated for the use response for both of the 

decision sets in the ranking comparison. For example, for the ranking comparison 

between the implicit and explicit decision set, whether or not the ranking changed 

was compared to the use response for both the implicit decision set and the 

explicit decision set. 

 

4.5. Results  

The survey was conducted during summer and fall of 2012. The survey responses 

were analyzed for each of the four analysis types discussed in Section 4.4.5.  

 

4.5.1 Demographics 

One hundred and forty surveys were collected in all, with 54 partially completed 

surveys discarded, resulting in 86 completed surveys (n=86) and a rejection rate 

of 38 percent. Surveys were discarded if they did not provide responses for all 

decision sets or if they skipped the initial demographic questions. 
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 Participant demographics illustrate similar age, education, and views on 

climate and modeling. The majority of respondents (92 percent) had a Bachelors 

degree or higher, with 65.1 percent having a Masters Degree or Doctorate. 

Approximately 76 percent of respondent were between the ages of 25 and 54, 

with approximately 52 percent between the ages of 35 and 54. Participant 

responses for age are shown in Table 4.1 and education is shown in Table 4.2.  

        Table 4.1. Survey participant age distribution 
Age Groups Frequency Percent 

 

18-24 7 8.14 
25-34 21 24.4 
35-54 45 52.35 
55+ 13 15.11 

Total 86 100.0 
 

     Table 4.2. Survey participant education summary 
Education Attained Frequency Percent 

 

Associate degree 1 1.2 
Bachelors Degree 24 27.9 
Doctorate 18 20.9 
Masters Degree 38 44.2 
Professional degree 2 2.3 
Some college, no degree 3 3.5 
Total 86 100.0 

 

When asked to indicate their level of agreement or disagreement about 

whether climate change was occurring, a majority of participants (91.8 percent) 

responded that they agree or strongly agree with the statement. Similarly, 86 

percent of respondents indicated that they agreed or strongly agreed that computer 

models were effective tools for exploring the impact of climate change on water 
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use and policy decisions. Respondents indicated a range of professions including 

GIS Professional/Analyst, professor, project manager, water manager, decision 

maker, graduate student, government employee (transportation planning, water 

and tax), and researcher.   

Based on the demographic responses and the targeted nature of the 

sample, survey participants were of similar ages and education (college degrees). 

Additionally, a majority shared common experience in GIS, decision support or 

project management or a combination of these experiences.  

 

4.5.2 Policy Ranking Comparison 

The rankings for each decision set were compared for each participant for the 

following pairs of decision sets: Implicit versus Explicit, Implicit versus No 

Uncertainty, and No Uncertainty versus Explicit. The purpose of this comparison 

was twofold. First, to identify whether participants were selecting the policy 

choices they favored personally, and second to evaluate whether the different 

visualizations resulted in differences in rankings for each decision set.  

The difference between the rankings for the three decision sets was 

statistically significant for the comparisons identified at the beginning of this 

section. Table 4.3 presents the results of the t-test comparison for each of the 

ranking pairs. In this case, the actual rankings provided were not of interest, but 

only whether the rankings were different between the decision sets. This indicates 

that participants did not choose policy options based solely on their opinion of the 
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policy options listed, since the only element that changed for each decision set 

was the visualization.  

 

Table 4.3. Paired differences results of the ranking comparison 

Ranking 
Comparisons T 

Degrees 
of 

Freedom 

Significance 
(2-tailed) 

Mean 
Difference 

95% Confidence 
Interval of the 

Difference 
Lower Upper 

Implicit versus 
No Uncertainty -4.150 29 .000 -34.326 -50.770 -17.882 

Implicit versus 
Explicit 13.196 29 .000 129.767 -113.125 -77.759 

Explicit versus 
No Uncertainty -10.731 29 .000 -95.442 110.216 149.319 

 

4.5.3 Do visualizations incorporate uncertain impacts of climate change? 

The responses to whether or not the visualizations incorporated the uncertainty 

impacts of climate change were evaluated for each decision set. The purpose of 

this evaluation was to identify whether participants understood that uncertainty 

was present in both the implicit and explicit visualization. The no uncertainty 

decision set served as a control, since it does not include uncertainty. Table 4.4 

summarizes the results of the t-tests for the uncertainty responses for each 

decision set including the significance and confidence interval. 
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Table 4.4. Results of the uncertainty comparison indicate that both the implicit and 
explicit visualizations were seen as including uncertainty, while those without 
uncertainty were not 

Uncertainty 

Test Value = 0 

T 
Degrees of 
Freedom 

Significance 
(2-tailed) 

Mean 
Difference 

95% 
Confidence 

Interval of the 
Difference 

Lower Upper 
Implicit  2.015 85 .047 .233 .003 .46 
No Uncertainty -4.442 85 .000 -.523 -.76 -.29 
Explicit  6.406 85 .000 .651 .45 .85 

 

The tests show that for the implicit and explicit decision sets, users 

identified the outcomes as incorporating climate change uncertainty. With 

significance values less than 0.05 we can reject the null hypothesis that the 

average response is zero, which would indicate that users were unsure of whether 

uncertainty was present. However, the p-value for the implicit uncertainty is 

0.047, therefore this is not a strong rejection of the null hypothesis. Additionally, 

the confidence intervals include only values greater than zero, indicating a level 

of agreement, as positive values are associated with agreement in the coding. It is 

interesting to note that for the implicit uncertainty, the significance and 

confidence interval do not result in a strong rejection of the null hypothesis.  

For the no uncertainty decision set, the results reject the null hypothesis 

with significance less than 0.05. Additionally, the confidence interval includes 

only negative values, which indicate disagreement. This evaluation serves as a 

control, as the no-uncertainty decision set does not represent uncertainty. The 

indication that implicit visualizations were interpreted as depicting uncertainty, 
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even though uncertainty was not expressly depicted, supports the hypothesis that 

it is possible to effectively communicate uncertainty without explicitly 

representing statistical uncertainty values. 

 

4.5.4 Is the visualization effective for evaluating the impact of policy changes 

on groundwater? 

Participant responses about the effectiveness of the methods for evaluating the 

policy options were evaluated for each decision set. The purpose of this 

evaluation was to evaluate whether there were differences in the perceived 

effectiveness of the methods. Table 4.5 summarizes the results of the t-tests for 

the effectiveness responses for each decision set including the significance and 

confidence interval. 

 

Table 4.5. Results of the effectiveness comparison indicate that all three 
visualizations were seen as effective for evaluating the policy decisions 

Effective 

Test Value = 0 

T 
Degrees of 
Freedom 

Significance 
(2-tailed) 

Mean 
Difference 

95% 
Confidence 

Interval of the 
Difference 

Lower Upper 
Implicit 5.410 85 .000 .570 .36 .78 
No Uncertainty 5.410 85 .001 .570 .36 .78 
Explicit 2.791 85 .006 .314 .09 .54 

 

The tests show that for all three sets, users identified outcomes as effective 

for evaluating the impact of policy changes on groundwater. This is indicated two 
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ways in the analysis. First, levels of significance are less than 0.05. This allows 

rejection of the null hypothesis that the average response is zero, indicating that 

users were not sure whether they found the visualizations effective. Additionally, 

the confidence interval for each includes only values greater than zero, which 

indicates a level of agreement, since positive values are associated with agreement 

in the coding. Each method being rated as effective for supporting the decision 

task presented suggests that implicit visualizations of uncertainty offer a method 

that is comparable to explicit or no uncertainty for communicating decision 

outcomes. This is a surprising result, as prior research suggests that explicit 

uncertainty is not effective for evaluating decision outcomes. 

 

4.5.5 Comparison of change in rankings and indication of whether they used 

the visualization in decisions 

Tables 4.6A-4.6C present the results for the use-based comparisons. All of the 

results, with one exception, show a significant difference in rankings regardless of 

whether or not the participant indicated that they used the model results in their 

decisions. The one exception is the implicit versus no uncertainty ranking 

comparisons for individuals that responded that they used the visualizations, 

which had a significance value of 0.366 (based on the use question in the implicit 

decision set) and 0.149 (based on the use question in the no uncertainty decision 

set), which are larger than the alpha value 0.05. This is an interesting result, as it 

indicates that participants were either not aware that the visualizations were 

influencing them or there were other factors being used between the decision sets. 
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Based on these results, there appears to be a discrepancy between how 

users responded to the question of whether they used the visualizations and how 

they acted in selecting policy options. When ranking differences were divided 

between those that indicated they did and did not use the visual information, the 

analysis showed that regardless of their response, the differences between 

rankings was statistically significant, with the exception noted above, a result that 

matched the overall analysis of the rankings (as discussed in Section 4.5.2). 

 

4.6. Discussion 

In this paper I focused on evaluating the implicit visualization of uncertainty for 

decision support. The results suggest that implicit visualization offers a viable 

means for representing the relationship between uncertainty and decision 

outcomes.  

An interesting result of this study was the discrepancy in participant 

responses to the policy ranking questions for each decision set and whether 

participants indicated that they used the visualizations to evaluate the policy 

outcomes. One possibility for this discrepancy is that users were relying on 

heuristics to evaluate policy rankings for each decision set. Individuals who 

indicated that they did not use the visualizations, but had different rankings, may 

have relied on prior experience or understanding to work through the decision. 

Future research could evaluate the impact of prior experience on the use of the 

visualizations by recording how the users interact with uncertainty visualizations.  
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The results of the effectiveness evaluation for explicit uncertainty appear 

to conflict with existing research that suggests explicit uncertainty visualization is 

not seen as beneficial by users. Future work should evaluate whether the 

supplementary information provided with the visualizations influences whether 

decision makers see explicit uncertainty visualization as useful. Inclusion of the 

scenario information creates a narrative to help decision makers understand the 

information in context. Narratives (or story telling) have been shown to be a 

strategy used for decision-making under uncertainty (Jonassen, 2012). The 

scenario included here may have assisted decision makers in integrating the 

visualizations into their framing of the problem.  

There are a number of factors about the administration of this survey that 

could be modified if the survey were repeated. The repetitive nature of the survey 

made longer than anticipated to complete and resulted in a 38 percent rejection 

rate due to incomplete surveys. Streamlining the survey information and questions 

might increase the completion and response rates. This issue also impacted 

collection of demographic information for all participants, as once they finished 

the decision sets, they then did not provide all of the requested demographics.  

 Collecting information from a large sample of professionals and decision 

makers often proves challenging for random sampling procedures. Although 

respondent driven sampling methods offer a means to access these populations, 

the use of their results with parametric statistical tests are limited and must be 

done with caution. To overcome this challenge, future studies using respondent 

driven sampling might broaden the initial seed sample in order to gather more 
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responses, as well as analyze the social connections of the respondents. Focus 

groups and small group decision workshops could also provide valuable insight 

into the interpretation and use of these visualizations by decision-makers.     

While this study sought to involve more decision makers and individuals 

that work with uncertainty to allow evaluation of how experience and domain 

knowledge (factors in how a problem is framed) influence whether implicit 

uncertainty informs decisions or is seen as uncertain, characteristics of this study 

group may have also impacted their ability or willingness to work through the 

visualizations in the policy decision process presented in this work. Decision 

makers, planners, and professionals experienced with uncertain decisions or 

complex data evaluation may be more inclined to work through the policy choices 

using the visualizations. Additional work to identify whether implicit uncertainty 

would be used or seen as effective by non-experts, and comparing these results to 

similar explicit visualizations, would provide insight into their potential use for 

communicating complex science to those without expertise in decision-making or 

science.  

If future studies seek to directly compare the effectiveness of implicit and 

explicit uncertainty in order to identify which is more useful for decision support, 

comparable visualization would need to be tested. For example, either maps for 

both implicit and explicit or outcomes spaces for explicit and implicit. The aim of 

this work was to evaluate whether individuals interpreted the visualizations as 

including uncertainty information (spatial or otherwise), whether implicit 

uncertainty is understood as uncertainty, as well as whether implicit visualizations 
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communicate uncertainty in a usable manner. Since the visualization methods 

were not directly comparable, it is not possible to conclude from this work that 

one is more effective than the other.  

Extensions of the study could include identifying whether decisions 

improve or more “correct” decisions are made with the inclusion of implicit 

uncertainty. Additional implicit visualization methods should also be evaluated 

such as the use of parallel coordinate plots, linking and brushing, or Youden Plots. 

Lastly, direct comparisons between explicit and implicit methods, as well as 

combined views, could aid in the development of an uncertainty visualization for 

decision support toolbox.  

 

4.7. Conclusion 

Incorporating uncertainty information into GIS data and output is a vital 

component for the effective use of spatial data to support decision making under 

uncertainty. This work focuses on evaluating a method for incorporating decision 

frames of stakeholders into uncertainty visualization. Doing this requires 

understanding what aspects of a problem are uncertain, the manner in which 

decision makers currently work through or interact with that uncertainty, and what 

information they need/desire when making decisions. As this case study 

demonstrates, implicitly representing uncertainty offers a means to integrate 

decision frames and uncertainty into a single visualization. The focus here shifts 

from the importance of individual uncertainty values to identifying the 

relationships and interactions between decisions, uncertainty, and outcomes. As 
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illustrated in this study, showing this integrated view (implicit) results in different 

decisions than explicitly representing uncertainty. Additionally, the implicit 

visualizations are still interpreted as including uncertainty. The results of this 

study will support future research into the effects of implicit uncertainty 

visualizations, as well as the development of additional implicit methods.  

This material is based upon work supported by the National Science 

Foundation under grant no. BCS-1026865 Central Arizona-Phoenix Long-Term 

Ecological Research. 
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Chapter 5 

CONCLUSIONS AND FUTURE WORK 

This final chapter summarizes the work presented in this dissertation and its 

relationship to existing work in uncertainty visualization. Additionally, it offers a 

discussion of future work that could follow from this dissertation. It will not be 

submitted for publication outside of this dissertation. 

 

5.1 Conclusions 

GIS researchers and policy decision makers acknowledge the importance of 

uncertainty in decision-making. Nevertheless, there is a lack of agreement on the 

usefulness of uncertainty visualization to support decision-making tasks. 

Resultantly, even though decision makers must contend with uncertainty when 

working through complex decision problems, uncertainty visualization and tools 

for working with uncertainty in GIS are not widely used by decision makers in 

decision support applications. This dissertation suggests that this disjoint between 

research and application stems from differences in how researchers and decision 

makers conceptualize uncertainty.  

Uncertainty for both decision makers and GIS researchers is defined as 

incompleteness in knowledge in the past, present, or future. The distinction 

between decision makers and GIS researchers, however, does not arise in the 

definition of uncertainty, but rather in how it is conceptualized. This distinction 

emerges through specific experiences with uncertainty, resulting in differing 

generalized uncertainty concepts. Decision makers regularly contend with 
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uncertainty in how current conditions or proposed policies will affect the future. 

The resulting generalized concept of uncertainty is that the outcomes of differing 

policies are impacted by future conditions. For GIS researchers, uncertainty more 

often reflects what is not known about the relationship between a measured or 

predicted value and the actual or true value. The generalized view of uncertainty 

therefore covers a wide range of data and model output characteristics, including 

error, accuracy, reliability, precision, and quality (Edwards and Nelson, 2001).  

To bridge the gap between these conceptualizations of uncertainty, this 

dissertation examined in detail how decision makers conceptualize uncertainty, 

relating their conceptualization to existing uncertainty visualization methods. 

Through this synthesis, a new a new conceptualization of uncertainty was 

presented, termed explicit and implicit as a way to connect researchers� and 

decision makers� understanding of uncertainty for use in GIS for decision 

support.  This dissertation explored uncertainty visualization as a means for 

reframing uncertainty in GIS for use in policy decision support through three 

connected topics.  

The conceptualization of uncertainty visualization as an outcome space 

presented in Chapter 2 reframes uncertainty as the relationship between 

uncertainty and decision outcomes. The focus on decision outcomes aligns with 

policy maker needs to evaluate outcomes over varying plausible futures (their 

decision frames), offering advantages over visualizing specific uncertainty values 

for individual scenarios. This research speaks to the challenge of overcoming the 

desire of decision makers to wait to learn more when faced with uncertainty, by 
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evaluating methods to incorporate uncertainty that resemble decision-making 

processes and heuristics. Outcome spaces support assessment of the relationships 

between uncertain variables and the results of policy decisions. Representing 

uncertainty implicitly as a physical space moves away from discrete results that 

imply a level of certainty to a continuous range of results that reflect the influence 

of uncertainty on policy outcomes. This allows decision makers to focus attention 

on the policy decisions and not on the technical aspects of what is unknown. This 

approach aligns with descriptive and prescriptive models of decision-making, 

including robust decision-making, focusing on assessing alternatives over 

multiple plausible futures.  

Building on the approach to integrating decision science theories into 

uncertainty visualization methods presented in Chapter 2, Chapter 3 developed a 

conceptualization of uncertainty, termed explicit and implicit, through a synthesis 

of existing decision science literature with uncertainty visualization methods. 

Through this synthesis explicit methods are linked to normative models of 

decision making that focus on how people should make decisions. Implicit 

uncertainty is linked to both descriptive (how people actually do make decisions) 

and prescriptive (developing decision support tools both support better decisions 

and are usable) integrating what decision makers actually do in practice with tools 

to support better decisions. The goal is to develop tools that are both useful to, 

and usable by, decision makers in order to support more informed decisions 

through exploration of the relationship between uncertainty and decision 

outcomes. 
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Building on descriptive decision making models, implicit uncertainty 

acknowledges the impact of decision makers experience, emotions and knowledge 

on how they frame decision problems, without assuming that the probability of 

future conditions are known or knowable. The relationship between uncertainty 

and decision outcomes becomes key to identifying policies that are robust against 

uncertainty. This focus on providing tools that assist decision makers in 

integrating uncertainty visualization in decision-making is prescriptive in nature.  

Chapter 3 also adapts several existing visualization methods to illustrate 

implicitly uncertainty visualization. For example, outcome spaces display the 

relationship between uncertainty and policy outcomes in a two dimensional graph. 

The resulting visualization allows evaluation of the variability of uncertainty over 

the plausible future conditions. Parallel coordinate plots show the relationship 

between uncertain outcomes and geographic locations, with each axis 

representing a geographic unit (for example census tract, parcel, city). Goal plots 

offer a means to identify policies that meet predefined goals for different 

geographic areas. These methods provide a foundation for integrating decision 

science theories into uncertainty visualization tool development for decision 

support.   

Chapter 4 evaluated the effectiveness of the implicit visualization concepts 

developed in Chapter 2 and Chapter 3. Results of a human subject study assessed 

the effectiveness of the implicit uncertainty visualization shown in Chapter 2 to 

support the identification of robust policy choices. The study suggests that 

implicit visualizations successfully communicated uncertainty about the scenarios 
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presented, and that participants appeared to use the information visualized to 

evaluate the policy choices. Additionally, participants indicated that the 

visualization methods were effective for assessing the policies presented. 

Interestingly, participants also indicated that the explicit visualizations of 

uncertainty were effective for supporting the policy task, a result which conflicts 

with prior visualization research results that show decision makers view 

uncertainty visualization as not meaningful or helpful to evaluating a problem.  

The work in Chapter 4 also poses an evaluation of effectiveness that 

differs from prior studies, focusing on whether implicit representations produce 

different decisions from explicit methods, as well as whether users identify the 

representations as effective for evaluating the robustness of a policy choice for 

future conditions. This differs from much of the prior research that defines 

effectiveness as correct responses, time to respond, or the ability to discover 

specific values. This work also supports the proposal that visualizing the 

relationship between uncertainty and outcomes has the potential to communicate 

uncertainty to decision makers. This fills a gap in existing literature through a new 

evaluation of effectiveness for uncertainty visualization for decision support and a 

new direction for representing uncertainty as it relates to decision support tools.  

These works are all connected through their integration of decision science 

and uncertainty visualization. Tools to communicate uncertain science in a 

manner usable to decision makers are vital as policy decision makers rely on 

scientific results to inform decisions under deep uncertainty. The level of detail 

and control in uncertainty visualization should vary based on whether the user is 
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the analyst, domain expert, or decision maker. As decision makers appear to 

accept the presence of uncertainty in the decision process, and indicate that their 

practices already incorporate “uncertainty visualization”, this work suggests that it 

is worth questioning why there is such apathy among users regarding demand for 

uncertainty visualization tools in GIS.  

Conceptualizing decision-making under uncertainty as a process regards 

uncertainty as a continuum, evolving from explicit during initial analysis and 

discovery to implicit for evaluation and making the decision. If explicit 

visualizations are not beneficial for evaluating potential outcomes or presenting 

information to decision makers and the public, or if different decision tasks 

benefit from different forms of visualization, then apathy towards existing 

uncertainty visualization methods is reasonable since existing tools do not provide 

the necessary flexibility. This dissertation fills a void in uncertainty visualization 

research for methods that support communicating uncertain science in a manner 

usable to decision makers.  

Existing uncertainty visualization research assumes that decision makers 

and GIS/visualization researchers have similar conceptualizations of uncertainty. 

Starting from decision science literature, this work suggests that there are decision 

makers and researchers conceptualization uncertainty differently. Developing 

methods that support evaluation of the relationship between uncertainty, decisions 

and outcomes builds on decision makers’ conceptualization of uncertainty 

offering an opportunity to bridge the gap between research and practical 

application. 
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5.2 Implications 

Bringing uncertainty visualization from theory to practice has applications beyond 

water planning and climate change, as well as beyond the work presented here. 

The use of geographic information and GIS in public policy decision support 

settings is vast, including transportation and land use planning, emergency 

management and hazards planning, and public health; implicit uncertainty 

visualization techniques can be developed and adapted to these different 

application areas. Existing techniques can be adapted to depict the complex 

relationships between uncertain data, policy choices, and outcomes of those 

choices. For example, parallel coordinate plots offer a viable means to evaluate 

multiple forms of uncertainty and the outcomes of policy decisions in single 

visualization. The outcomes of a given policy choice can be shown for all values 

of an uncertain (or multiple uncertain) variables, and then compared across 

decisions. Spiral graphs offer an additional option, showing the policy outcomes 

resulting from the “most certain” data values in the center, and the less certain 

results on the outside of the spiral.  

The challenge for researchers is the need to identify how decision makers 

interact with uncertainty, and apply that knowledge to develop methods for 

decision support in that policy area. Beyond understanding the decision domain, 

interacting with decision makers offers researchers a chance to clarify the manner 

in which uncertainty is integrated into the decision-making process. Decision 

makers are similarly challenged, as they need to be willing to not only 

communicate what they need in decision support, but also share with researchers 
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information about the decision-making process so that researchers can identify the 

ways that decision makers work through uncertainty. While this complicates the 

vision of developing standard uncertainty visualization tools for use in GIS, 

targeted development of techniques to support the use of uncertainty in policy 

decisions has the potential to bring uncertainty visualization from research into 

practice. 

 

5.3 Future Research and Challenges 

New questions have been raised by this research. For example, the indication that 

both the explicit and implicit methods were seen as effective for evaluating the 

decision problem conflicts with prior research, and leads me to question further 

why uncertainty visualization tools are not common decision support tools. 

Likewise, the discrepancy between users indication of whether or not they used 

the visualizations to make decisions, and differences in their responses, suggests 

that something other than the visualizations was influencing their decisions. This 

seems reasonable, as heuristics and prior knowledge influence decision-making. 

Future research could examine the differences between individuals with 

experience in decision making with no domain experience and those with 

experience in GIS, the domain, and decision-making. I hypothesize that domain 

experience would influence the way that the visualizations were used, and 

whether or not decision makers were able to integrate the information into their 

decisions, even if it conflicted with their existing knowledge. This current 

research attempted to evaluate the experience of participants to ensure that they 
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had similar backgrounds and experience or exposure to decision-making or GIS, 

but this level of distinction in participants would require a more detailed survey of 

user backgrounds. Smaller surveys with face-to-face interviews and recruiting 

would offer a means to address this challenge of grouping users by experience 

and identify specifically how they were using the visualizations and prior 

experience to make the ranking choices.  

Another question worthy of investigation is how users interact with the 

implicit visualizations in an interactive decision support setting, where they can 

select the policies and potentially the uncertain input variables to be shown on the 

axes. Interaction adds a new influence factor to the evaluation, which would have 

limited the ability of this current work to identify whether participants were 

responding to the visualization method itself or the interaction method. Additional 

studies to assess the effectiveness of these methods in an interactive decision 

support tool would offer insight into how they can be implemented in future tools.  

Moreover, the impact of adding implicit visualizations to the decision 

process, where individuals narrow policy choices down using implicit methods, 

then evaluate the impact of each policy on specific regions, is an interesting next 

step in evaluation. This addition would explore the impact on decision processes 

instead of whether decision makers can use the information to assess policy 

options as done in this current work.  

Lastly, future research could evaluate visualizations that account for 

multiple variables, or depict the propagation of uncertainty through a model. 

Parallel coordinate plots offer a means for both explicit representations of 
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outcomes as they relate to geographic space or temporal scales, as well as 

showing the relationships between uncertainty estimates and multiple scenarios. I 

think this is one of the most interesting future directions of this research, as 

providing a toolbox of implicit visualization methods would support a variety of 

decision frames and decision tasks.  
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