Skip to Content
Report an accessibility problem
Research

Research

Research

Summary

Modern research in materials science is strongly focused on the design and synthesis of materials not available in nature. The molecular approach to crystal growth exemplified by this project represents a new tool for this quest that may lead to materials with unique properties. In particular, some of the materials to be studied, including alloys of Al, P, N, and Si, are expected to have lattice dimensions similar to a silicon crystal and could form the basis for Si-based tandem solar cells. Single-layer silicon solar cells dominate the current photovoltaics market but their efficiency is limited to about 25%. The cell efficiency could exceed 30% in tandem structures, with large societal impact. The uniqueness of the molecules-to-solids approach also creates opportunities for multidisciplinary education. The project includes the development of new courses that allow students to become familiar with the chemistry and physics concepts needed to pursue materials research. Provisions are also being made to create a database of chemical precursors, to be made available to the community at large, which insures that other researchers have access to the synthetic innovations developed under this project.
 

Funding

National Science Foundation, Division of Materials Research

Timeline

September 2013 — August 2016